$$$36 \cos^{2}{\left(\theta \right)}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$36 \cos^{2}{\left(\theta \right)}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int 36 \cos^{2}{\left(\theta \right)}\, d\theta$$$.

Çözüm

Sabit katsayı kuralı $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$'i $$$c=36$$$ ve $$$f{\left(\theta \right)} = \cos^{2}{\left(\theta \right)}$$$ ile uygula:

$${\color{red}{\int{36 \cos^{2}{\left(\theta \right)} d \theta}}} = {\color{red}{\left(36 \int{\cos^{2}{\left(\theta \right)} d \theta}\right)}}$$

Kuvvet indirgeme formülü $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$'i $$$\alpha=\theta$$$ ile uygula:

$$36 {\color{red}{\int{\cos^{2}{\left(\theta \right)} d \theta}}} = 36 {\color{red}{\int{\left(\frac{\cos{\left(2 \theta \right)}}{2} + \frac{1}{2}\right)d \theta}}}$$

Sabit katsayı kuralı $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(\theta \right)} = \cos{\left(2 \theta \right)} + 1$$$ ile uygula:

$$36 {\color{red}{\int{\left(\frac{\cos{\left(2 \theta \right)}}{2} + \frac{1}{2}\right)d \theta}}} = 36 {\color{red}{\left(\frac{\int{\left(\cos{\left(2 \theta \right)} + 1\right)d \theta}}{2}\right)}}$$

Her terimin integralini alın:

$$18 {\color{red}{\int{\left(\cos{\left(2 \theta \right)} + 1\right)d \theta}}} = 18 {\color{red}{\left(\int{1 d \theta} + \int{\cos{\left(2 \theta \right)} d \theta}\right)}}$$

$$$c=1$$$ kullanarak $$$\int c\, d\theta = c \theta$$$ sabit kuralını uygula:

$$18 \int{\cos{\left(2 \theta \right)} d \theta} + 18 {\color{red}{\int{1 d \theta}}} = 18 \int{\cos{\left(2 \theta \right)} d \theta} + 18 {\color{red}{\theta}}$$

$$$u=2 \theta$$$ olsun.

Böylece $$$du=\left(2 \theta\right)^{\prime }d\theta = 2 d\theta$$$ (adımlar » görülebilir) ve $$$d\theta = \frac{du}{2}$$$ elde ederiz.

İntegral şu şekilde yeniden yazılabilir:

$$18 \theta + 18 {\color{red}{\int{\cos{\left(2 \theta \right)} d \theta}}} = 18 \theta + 18 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ ile uygula:

$$18 \theta + 18 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = 18 \theta + 18 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$

Kosinüsün integrali $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$18 \theta + 9 {\color{red}{\int{\cos{\left(u \right)} d u}}} = 18 \theta + 9 {\color{red}{\sin{\left(u \right)}}}$$

Hatırlayın ki $$$u=2 \theta$$$:

$$18 \theta + 9 \sin{\left({\color{red}{u}} \right)} = 18 \theta + 9 \sin{\left({\color{red}{\left(2 \theta\right)}} \right)}$$

Dolayısıyla,

$$\int{36 \cos^{2}{\left(\theta \right)} d \theta} = 18 \theta + 9 \sin{\left(2 \theta \right)}$$

İntegrasyon sabitini ekleyin:

$$\int{36 \cos^{2}{\left(\theta \right)} d \theta} = 18 \theta + 9 \sin{\left(2 \theta \right)}+C$$

Cevap

$$$\int 36 \cos^{2}{\left(\theta \right)}\, d\theta = \left(18 \theta + 9 \sin{\left(2 \theta \right)}\right) + C$$$A


Please try a new game Rotatly