$$$t$$$ değişkenine göre $$$5880 i n t^{8} - 1$$$ fonksiyonunun integrali

Hesaplayıcı, $$$t$$$ değişkenine göre $$$5880 i n t^{8} - 1$$$ fonksiyonunun integralini/antitürevini bulur ve adım adım gösterir.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \left(5880 i n t^{8} - 1\right)\, dt$$$.

Çözüm

Her terimin integralini alın:

$${\color{red}{\int{\left(5880 i n t^{8} - 1\right)d t}}} = {\color{red}{\left(- \int{1 d t} + \int{5880 i n t^{8} d t}\right)}}$$

$$$c=1$$$ kullanarak $$$\int c\, dt = c t$$$ sabit kuralını uygula:

$$\int{5880 i n t^{8} d t} - {\color{red}{\int{1 d t}}} = \int{5880 i n t^{8} d t} - {\color{red}{t}}$$

Sabit katsayı kuralı $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$'i $$$c=5880 i n$$$ ve $$$f{\left(t \right)} = t^{8}$$$ ile uygula:

$$- t + {\color{red}{\int{5880 i n t^{8} d t}}} = - t + {\color{red}{\left(5880 i n \int{t^{8} d t}\right)}}$$

Kuvvet kuralını $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=8$$$ ile uygulayın:

$$5880 i n {\color{red}{\int{t^{8} d t}}} - t=5880 i n {\color{red}{\frac{t^{1 + 8}}{1 + 8}}} - t=5880 i n {\color{red}{\left(\frac{t^{9}}{9}\right)}} - t$$

Dolayısıyla,

$$\int{\left(5880 i n t^{8} - 1\right)d t} = \frac{1960 i n t^{9}}{3} - t$$

İntegrasyon sabitini ekleyin:

$$\int{\left(5880 i n t^{8} - 1\right)d t} = \frac{1960 i n t^{9}}{3} - t+C$$

Cevap

$$$\int \left(5880 i n t^{8} - 1\right)\, dt = \left(\frac{1960 i n t^{9}}{3} - t\right) + C$$$A


Please try a new game Rotatly