$$$2 - e^{\frac{x}{2}}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$2 - e^{\frac{x}{2}}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \left(2 - e^{\frac{x}{2}}\right)\, dx$$$.

Çözüm

Her terimin integralini alın:

$${\color{red}{\int{\left(2 - e^{\frac{x}{2}}\right)d x}}} = {\color{red}{\left(\int{2 d x} - \int{e^{\frac{x}{2}} d x}\right)}}$$

$$$c=2$$$ kullanarak $$$\int c\, dx = c x$$$ sabit kuralını uygula:

$$- \int{e^{\frac{x}{2}} d x} + {\color{red}{\int{2 d x}}} = - \int{e^{\frac{x}{2}} d x} + {\color{red}{\left(2 x\right)}}$$

$$$u=\frac{x}{2}$$$ olsun.

Böylece $$$du=\left(\frac{x}{2}\right)^{\prime }dx = \frac{dx}{2}$$$ (adımlar » görülebilir) ve $$$dx = 2 du$$$ elde ederiz.

O halde,

$$2 x - {\color{red}{\int{e^{\frac{x}{2}} d x}}} = 2 x - {\color{red}{\int{2 e^{u} d u}}}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=2$$$ ve $$$f{\left(u \right)} = e^{u}$$$ ile uygula:

$$2 x - {\color{red}{\int{2 e^{u} d u}}} = 2 x - {\color{red}{\left(2 \int{e^{u} d u}\right)}}$$

Üstel fonksiyonun integrali $$$\int{e^{u} d u} = e^{u}$$$:

$$2 x - 2 {\color{red}{\int{e^{u} d u}}} = 2 x - 2 {\color{red}{e^{u}}}$$

Hatırlayın ki $$$u=\frac{x}{2}$$$:

$$2 x - 2 e^{{\color{red}{u}}} = 2 x - 2 e^{{\color{red}{\left(\frac{x}{2}\right)}}}$$

Dolayısıyla,

$$\int{\left(2 - e^{\frac{x}{2}}\right)d x} = 2 x - 2 e^{\frac{x}{2}}$$

Sadeleştirin:

$$\int{\left(2 - e^{\frac{x}{2}}\right)d x} = 2 \left(x - e^{\frac{x}{2}}\right)$$

İntegrasyon sabitini ekleyin:

$$\int{\left(2 - e^{\frac{x}{2}}\right)d x} = 2 \left(x - e^{\frac{x}{2}}\right)+C$$

Cevap

$$$\int \left(2 - e^{\frac{x}{2}}\right)\, dx = 2 \left(x - e^{\frac{x}{2}}\right) + C$$$A


Please try a new game Rotatly