$$$\frac{1}{x \ln\left(x^{3}\right)}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\frac{1}{x \ln\left(x^{3}\right)}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{1}{3 x \ln\left(x\right)}\, dx$$$.

Çözüm

Girdi yeniden yazıldı: $$$\int{\frac{1}{x \ln{\left(x^{3} \right)}} d x}=\int{\frac{1}{3 x \ln{\left(x \right)}} d x}$$$.

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{1}{3}$$$ ve $$$f{\left(x \right)} = \frac{1}{x \ln{\left(x \right)}}$$$ ile uygula:

$${\color{red}{\int{\frac{1}{3 x \ln{\left(x \right)}} d x}}} = {\color{red}{\left(\frac{\int{\frac{1}{x \ln{\left(x \right)}} d x}}{3}\right)}}$$

$$$u=\ln{\left(x \right)}$$$ olsun.

Böylece $$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (adımlar » görülebilir) ve $$$\frac{dx}{x} = du$$$ elde ederiz.

İntegral şu şekilde yeniden yazılabilir:

$$\frac{{\color{red}{\int{\frac{1}{x \ln{\left(x \right)}} d x}}}}{3} = \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{3}$$

$$$\frac{1}{u}$$$'nin integrali $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{{\color{red}{\int{\frac{1}{u} d u}}}}{3} = \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{3}$$

Hatırlayın ki $$$u=\ln{\left(x \right)}$$$:

$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{3} = \frac{\ln{\left(\left|{{\color{red}{\ln{\left(x \right)}}}}\right| \right)}}{3}$$

Dolayısıyla,

$$\int{\frac{1}{3 x \ln{\left(x \right)}} d x} = \frac{\ln{\left(\left|{\ln{\left(x \right)}}\right| \right)}}{3}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{1}{3 x \ln{\left(x \right)}} d x} = \frac{\ln{\left(\left|{\ln{\left(x \right)}}\right| \right)}}{3}+C$$

Cevap

$$$\int \frac{1}{3 x \ln\left(x\right)}\, dx = \frac{\ln\left(\left|{\ln\left(x\right)}\right|\right)}{3} + C$$$A


Please try a new game Rotatly