$$$\frac{1}{\cos{\left(x \right)} + 1}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\frac{1}{\cos{\left(x \right)} + 1}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{1}{\cos{\left(x \right)} + 1}\, dx$$$.

Çözüm

Kosinüsü çift açı formülü $$$\cos\left(x\right)=2\cos^2\left(\frac{x}{2}\right)-1$$$ kullanarak yeniden yazın ve sadeleştirin:

$${\color{red}{\int{\frac{1}{\cos{\left(x \right)} + 1} d x}}} = {\color{red}{\int{\frac{1}{2 \cos^{2}{\left(\frac{x}{2} \right)}} d x}}}$$

$$$u=\frac{x}{2}$$$ olsun.

Böylece $$$du=\left(\frac{x}{2}\right)^{\prime }dx = \frac{dx}{2}$$$ (adımlar » görülebilir) ve $$$dx = 2 du$$$ elde ederiz.

O halde,

$${\color{red}{\int{\frac{1}{2 \cos^{2}{\left(\frac{x}{2} \right)}} d x}}} = {\color{red}{\int{\frac{1}{\cos^{2}{\left(u \right)}} d u}}}$$

İntegrand'ı sekant cinsinden yeniden yazın.:

$${\color{red}{\int{\frac{1}{\cos^{2}{\left(u \right)}} d u}}} = {\color{red}{\int{\sec^{2}{\left(u \right)} d u}}}$$

$$$\sec^{2}{\left(u \right)}$$$'nin integrali $$$\int{\sec^{2}{\left(u \right)} d u} = \tan{\left(u \right)}$$$:

$${\color{red}{\int{\sec^{2}{\left(u \right)} d u}}} = {\color{red}{\tan{\left(u \right)}}}$$

Hatırlayın ki $$$u=\frac{x}{2}$$$:

$$\tan{\left({\color{red}{u}} \right)} = \tan{\left({\color{red}{\left(\frac{x}{2}\right)}} \right)}$$

Dolayısıyla,

$$\int{\frac{1}{\cos{\left(x \right)} + 1} d x} = \tan{\left(\frac{x}{2} \right)}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{1}{\cos{\left(x \right)} + 1} d x} = \tan{\left(\frac{x}{2} \right)}+C$$

Cevap

$$$\int \frac{1}{\cos{\left(x \right)} + 1}\, dx = \tan{\left(\frac{x}{2} \right)} + C$$$A


Please try a new game Rotatly