$$$x$$$ değişkenine göre $$$y^{\frac{7}{2}} \left(4 x^{3} y - 2 x y^{2}\right)$$$ fonksiyonunun integrali

Hesaplayıcı, $$$x$$$ değişkenine göre $$$y^{\frac{7}{2}} \left(4 x^{3} y - 2 x y^{2}\right)$$$ fonksiyonunun integralini/antitürevini bulur ve adım adım gösterir.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int y^{\frac{7}{2}} \left(4 x^{3} y - 2 x y^{2}\right)\, dx$$$.

Çözüm

İntegranı sadeleştirin:

$${\color{red}{\int{y^{\frac{7}{2}} \left(4 x^{3} y - 2 x y^{2}\right) d x}}} = {\color{red}{\int{2 x y^{\frac{9}{2}} \left(2 x^{2} - y\right) d x}}}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=2 y^{\frac{9}{2}}$$$ ve $$$f{\left(x \right)} = x \left(2 x^{2} - y\right)$$$ ile uygula:

$${\color{red}{\int{2 x y^{\frac{9}{2}} \left(2 x^{2} - y\right) d x}}} = {\color{red}{\left(2 y^{\frac{9}{2}} \int{x \left(2 x^{2} - y\right) d x}\right)}}$$

$$$u=2 x^{2} - y$$$ olsun.

Böylece $$$du=\left(2 x^{2} - y\right)^{\prime }dx = 4 x dx$$$ (adımlar » görülebilir) ve $$$x dx = \frac{du}{4}$$$ elde ederiz.

Dolayısıyla,

$$2 y^{\frac{9}{2}} {\color{red}{\int{x \left(2 x^{2} - y\right) d x}}} = 2 y^{\frac{9}{2}} {\color{red}{\int{\frac{u}{4} d u}}}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{4}$$$ ve $$$f{\left(u \right)} = u$$$ ile uygula:

$$2 y^{\frac{9}{2}} {\color{red}{\int{\frac{u}{4} d u}}} = 2 y^{\frac{9}{2}} {\color{red}{\left(\frac{\int{u d u}}{4}\right)}}$$

Kuvvet kuralını $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=1$$$ ile uygulayın:

$$\frac{y^{\frac{9}{2}} {\color{red}{\int{u d u}}}}{2}=\frac{y^{\frac{9}{2}} {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}}{2}=\frac{y^{\frac{9}{2}} {\color{red}{\left(\frac{u^{2}}{2}\right)}}}{2}$$

Hatırlayın ki $$$u=2 x^{2} - y$$$:

$$\frac{y^{\frac{9}{2}} {\color{red}{u}}^{2}}{4} = \frac{y^{\frac{9}{2}} {\color{red}{\left(2 x^{2} - y\right)}}^{2}}{4}$$

Dolayısıyla,

$$\int{y^{\frac{7}{2}} \left(4 x^{3} y - 2 x y^{2}\right) d x} = \frac{y^{\frac{9}{2}} \left(2 x^{2} - y\right)^{2}}{4}$$

Sadeleştirin:

$$\int{y^{\frac{7}{2}} \left(4 x^{3} y - 2 x y^{2}\right) d x} = \frac{y^{\frac{9}{2}} \left(- 2 x^{2} + y\right)^{2}}{4}$$

İntegrasyon sabitini ekleyin:

$$\int{y^{\frac{7}{2}} \left(4 x^{3} y - 2 x y^{2}\right) d x} = \frac{y^{\frac{9}{2}} \left(- 2 x^{2} + y\right)^{2}}{4}+C$$

Cevap

$$$\int y^{\frac{7}{2}} \left(4 x^{3} y - 2 x y^{2}\right)\, dx = \frac{y^{\frac{9}{2}} \left(- 2 x^{2} + y\right)^{2}}{4} + C$$$A


Please try a new game Rotatly