$$$x$$$ değişkenine göre $$$x y^{x}$$$ fonksiyonunun integrali

Hesaplayıcı, $$$x$$$ değişkenine göre $$$x y^{x}$$$ fonksiyonunun integralini/antitürevini bulur ve adım adım gösterir.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int x y^{x}\, dx$$$.

Çözüm

$$$\int{x y^{x} d x}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.

$$$\operatorname{u}=x$$$ ve $$$\operatorname{dv}=y^{x} dx$$$ olsun.

O halde $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{y^{x} d x}=\frac{y^{x}}{\ln{\left(y \right)}}$$$ (adımlar için bkz. »).

İntegral şu hale gelir

$${\color{red}{\int{x y^{x} d x}}}={\color{red}{\left(x \cdot \frac{y^{x}}{\ln{\left(y \right)}}-\int{\frac{y^{x}}{\ln{\left(y \right)}} \cdot 1 d x}\right)}}={\color{red}{\left(\frac{x y^{x}}{\ln{\left(y \right)}} - \int{\frac{y^{x}}{\ln{\left(y \right)}} d x}\right)}}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{1}{\ln{\left(y \right)}}$$$ ve $$$f{\left(x \right)} = y^{x}$$$ ile uygula:

$$\frac{x y^{x}}{\ln{\left(y \right)}} - {\color{red}{\int{\frac{y^{x}}{\ln{\left(y \right)}} d x}}} = \frac{x y^{x}}{\ln{\left(y \right)}} - {\color{red}{\frac{\int{y^{x} d x}}{\ln{\left(y \right)}}}}$$

Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=y$$$:

$$\frac{x y^{x}}{\ln{\left(y \right)}} - \frac{{\color{red}{\int{y^{x} d x}}}}{\ln{\left(y \right)}} = \frac{x y^{x}}{\ln{\left(y \right)}} - \frac{{\color{red}{\frac{y^{x}}{\ln{\left(y \right)}}}}}{\ln{\left(y \right)}}$$

Dolayısıyla,

$$\int{x y^{x} d x} = \frac{x y^{x}}{\ln{\left(y \right)}} - \frac{y^{x}}{\ln{\left(y \right)}^{2}}$$

Sadeleştirin:

$$\int{x y^{x} d x} = \frac{y^{x} \left(x \ln{\left(y \right)} - 1\right)}{\ln{\left(y \right)}^{2}}$$

İntegrasyon sabitini ekleyin:

$$\int{x y^{x} d x} = \frac{y^{x} \left(x \ln{\left(y \right)} - 1\right)}{\ln{\left(y \right)}^{2}}+C$$

Cevap

$$$\int x y^{x}\, dx = \frac{y^{x} \left(x \ln\left(y\right) - 1\right)}{\ln^{2}\left(y\right)} + C$$$A


Please try a new game Rotatly