$$$x \sin{\left(2 x \right)}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int x \sin{\left(2 x \right)}\, dx$$$.
Çözüm
$$$\int{x \sin{\left(2 x \right)} d x}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.
$$$\operatorname{u}=x$$$ ve $$$\operatorname{dv}=\sin{\left(2 x \right)} dx$$$ olsun.
O halde $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{\sin{\left(2 x \right)} d x}=- \frac{\cos{\left(2 x \right)}}{2}$$$ (adımlar için bkz. »).
Dolayısıyla,
$${\color{red}{\int{x \sin{\left(2 x \right)} d x}}}={\color{red}{\left(x \cdot \left(- \frac{\cos{\left(2 x \right)}}{2}\right)-\int{\left(- \frac{\cos{\left(2 x \right)}}{2}\right) \cdot 1 d x}\right)}}={\color{red}{\left(- \frac{x \cos{\left(2 x \right)}}{2} - \int{\left(- \frac{\cos{\left(2 x \right)}}{2}\right)d x}\right)}}$$
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=- \frac{1}{2}$$$ ve $$$f{\left(x \right)} = \cos{\left(2 x \right)}$$$ ile uygula:
$$- \frac{x \cos{\left(2 x \right)}}{2} - {\color{red}{\int{\left(- \frac{\cos{\left(2 x \right)}}{2}\right)d x}}} = - \frac{x \cos{\left(2 x \right)}}{2} - {\color{red}{\left(- \frac{\int{\cos{\left(2 x \right)} d x}}{2}\right)}}$$
$$$u=2 x$$$ olsun.
Böylece $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (adımlar » görülebilir) ve $$$dx = \frac{du}{2}$$$ elde ederiz.
İntegral şu hale gelir
$$- \frac{x \cos{\left(2 x \right)}}{2} + \frac{{\color{red}{\int{\cos{\left(2 x \right)} d x}}}}{2} = - \frac{x \cos{\left(2 x \right)}}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ ile uygula:
$$- \frac{x \cos{\left(2 x \right)}}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2} = - \frac{x \cos{\left(2 x \right)}}{2} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{2}$$
Kosinüsün integrali $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$- \frac{x \cos{\left(2 x \right)}}{2} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{4} = - \frac{x \cos{\left(2 x \right)}}{2} + \frac{{\color{red}{\sin{\left(u \right)}}}}{4}$$
Hatırlayın ki $$$u=2 x$$$:
$$- \frac{x \cos{\left(2 x \right)}}{2} + \frac{\sin{\left({\color{red}{u}} \right)}}{4} = - \frac{x \cos{\left(2 x \right)}}{2} + \frac{\sin{\left({\color{red}{\left(2 x\right)}} \right)}}{4}$$
Dolayısıyla,
$$\int{x \sin{\left(2 x \right)} d x} = - \frac{x \cos{\left(2 x \right)}}{2} + \frac{\sin{\left(2 x \right)}}{4}$$
İntegrasyon sabitini ekleyin:
$$\int{x \sin{\left(2 x \right)} d x} = - \frac{x \cos{\left(2 x \right)}}{2} + \frac{\sin{\left(2 x \right)}}{4}+C$$
Cevap
$$$\int x \sin{\left(2 x \right)}\, dx = \left(- \frac{x \cos{\left(2 x \right)}}{2} + \frac{\sin{\left(2 x \right)}}{4}\right) + C$$$A