$$$x \ln\left(x + 1\right)$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int x \ln\left(x + 1\right)\, dx$$$.
Çözüm
$$$\int{x \ln{\left(x + 1 \right)} d x}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.
$$$\operatorname{u}=\ln{\left(x + 1 \right)}$$$ ve $$$\operatorname{dv}=x dx$$$ olsun.
O halde $$$\operatorname{du}=\left(\ln{\left(x + 1 \right)}\right)^{\prime }dx=\frac{dx}{x + 1}$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{x d x}=\frac{x^{2}}{2}$$$ (adımlar için bkz. »).
İntegral şu şekilde yeniden yazılabilir:
$${\color{red}{\int{x \ln{\left(x + 1 \right)} d x}}}={\color{red}{\left(\ln{\left(x + 1 \right)} \cdot \frac{x^{2}}{2}-\int{\frac{x^{2}}{2} \cdot \frac{1}{x + 1} d x}\right)}}={\color{red}{\left(\frac{x^{2} \ln{\left(x + 1 \right)}}{2} - \int{\frac{x^{2}}{2 x + 2} d x}\right)}}$$
İntegranı sadeleştirin:
$$\frac{x^{2} \ln{\left(x + 1 \right)}}{2} - {\color{red}{\int{\frac{x^{2}}{2 x + 2} d x}}} = \frac{x^{2} \ln{\left(x + 1 \right)}}{2} - {\color{red}{\int{\frac{x^{2}}{2 \left(x + 1\right)} d x}}}$$
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(x \right)} = \frac{x^{2}}{x + 1}$$$ ile uygula:
$$\frac{x^{2} \ln{\left(x + 1 \right)}}{2} - {\color{red}{\int{\frac{x^{2}}{2 \left(x + 1\right)} d x}}} = \frac{x^{2} \ln{\left(x + 1 \right)}}{2} - {\color{red}{\left(\frac{\int{\frac{x^{2}}{x + 1} d x}}{2}\right)}}$$
Payın derecesi paydanın derecesinden küçük olmadığından, polinom uzun bölmesi uygulayın (adımlar » görülebilir):
$$\frac{x^{2} \ln{\left(x + 1 \right)}}{2} - \frac{{\color{red}{\int{\frac{x^{2}}{x + 1} d x}}}}{2} = \frac{x^{2} \ln{\left(x + 1 \right)}}{2} - \frac{{\color{red}{\int{\left(x - 1 + \frac{1}{x + 1}\right)d x}}}}{2}$$
Her terimin integralini alın:
$$\frac{x^{2} \ln{\left(x + 1 \right)}}{2} - \frac{{\color{red}{\int{\left(x - 1 + \frac{1}{x + 1}\right)d x}}}}{2} = \frac{x^{2} \ln{\left(x + 1 \right)}}{2} - \frac{{\color{red}{\left(- \int{1 d x} + \int{x d x} + \int{\frac{1}{x + 1} d x}\right)}}}{2}$$
$$$c=1$$$ kullanarak $$$\int c\, dx = c x$$$ sabit kuralını uygula:
$$\frac{x^{2} \ln{\left(x + 1 \right)}}{2} - \frac{\int{x d x}}{2} - \frac{\int{\frac{1}{x + 1} d x}}{2} + \frac{{\color{red}{\int{1 d x}}}}{2} = \frac{x^{2} \ln{\left(x + 1 \right)}}{2} - \frac{\int{x d x}}{2} - \frac{\int{\frac{1}{x + 1} d x}}{2} + \frac{{\color{red}{x}}}{2}$$
Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=1$$$ ile uygulayın:
$$\frac{x^{2} \ln{\left(x + 1 \right)}}{2} + \frac{x}{2} - \frac{\int{\frac{1}{x + 1} d x}}{2} - \frac{{\color{red}{\int{x d x}}}}{2}=\frac{x^{2} \ln{\left(x + 1 \right)}}{2} + \frac{x}{2} - \frac{\int{\frac{1}{x + 1} d x}}{2} - \frac{{\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{2}=\frac{x^{2} \ln{\left(x + 1 \right)}}{2} + \frac{x}{2} - \frac{\int{\frac{1}{x + 1} d x}}{2} - \frac{{\color{red}{\left(\frac{x^{2}}{2}\right)}}}{2}$$
$$$u=x + 1$$$ olsun.
Böylece $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (adımlar » görülebilir) ve $$$dx = du$$$ elde ederiz.
O halde,
$$\frac{x^{2} \ln{\left(x + 1 \right)}}{2} - \frac{x^{2}}{4} + \frac{x}{2} - \frac{{\color{red}{\int{\frac{1}{x + 1} d x}}}}{2} = \frac{x^{2} \ln{\left(x + 1 \right)}}{2} - \frac{x^{2}}{4} + \frac{x}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
$$$\frac{1}{u}$$$'nin integrali $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{x^{2} \ln{\left(x + 1 \right)}}{2} - \frac{x^{2}}{4} + \frac{x}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{x^{2} \ln{\left(x + 1 \right)}}{2} - \frac{x^{2}}{4} + \frac{x}{2} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
Hatırlayın ki $$$u=x + 1$$$:
$$\frac{x^{2} \ln{\left(x + 1 \right)}}{2} - \frac{x^{2}}{4} + \frac{x}{2} - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = \frac{x^{2} \ln{\left(x + 1 \right)}}{2} - \frac{x^{2}}{4} + \frac{x}{2} - \frac{\ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)}}{2}$$
Dolayısıyla,
$$\int{x \ln{\left(x + 1 \right)} d x} = \frac{x^{2} \ln{\left(x + 1 \right)}}{2} - \frac{x^{2}}{4} + \frac{x}{2} - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2}$$
İntegrasyon sabitini ekleyin:
$$\int{x \ln{\left(x + 1 \right)} d x} = \frac{x^{2} \ln{\left(x + 1 \right)}}{2} - \frac{x^{2}}{4} + \frac{x}{2} - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2}+C$$
Cevap
$$$\int x \ln\left(x + 1\right)\, dx = \left(\frac{x^{2} \ln\left(x + 1\right)}{2} - \frac{x^{2}}{4} + \frac{x}{2} - \frac{\ln\left(\left|{x + 1}\right|\right)}{2}\right) + C$$$A