$$$2^{x} x$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$2^{x} x$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int 2^{x} x\, dx$$$.

Çözüm

$$$\int{2^{x} x d x}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.

$$$\operatorname{u}=x$$$ ve $$$\operatorname{dv}=2^{x} dx$$$ olsun.

O halde $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{2^{x} d x}=\frac{2^{x}}{\ln{\left(2 \right)}}$$$ (adımlar için bkz. »).

İntegral şu hale gelir

$${\color{red}{\int{2^{x} x d x}}}={\color{red}{\left(x \cdot \frac{2^{x}}{\ln{\left(2 \right)}}-\int{\frac{2^{x}}{\ln{\left(2 \right)}} \cdot 1 d x}\right)}}={\color{red}{\left(\frac{2^{x} x}{\ln{\left(2 \right)}} - \int{\frac{2^{x}}{\ln{\left(2 \right)}} d x}\right)}}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{1}{\ln{\left(2 \right)}}$$$ ve $$$f{\left(x \right)} = 2^{x}$$$ ile uygula:

$$\frac{2^{x} x}{\ln{\left(2 \right)}} - {\color{red}{\int{\frac{2^{x}}{\ln{\left(2 \right)}} d x}}} = \frac{2^{x} x}{\ln{\left(2 \right)}} - {\color{red}{\frac{\int{2^{x} d x}}{\ln{\left(2 \right)}}}}$$

Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=2$$$:

$$\frac{2^{x} x}{\ln{\left(2 \right)}} - \frac{{\color{red}{\int{2^{x} d x}}}}{\ln{\left(2 \right)}} = \frac{2^{x} x}{\ln{\left(2 \right)}} - \frac{{\color{red}{\frac{2^{x}}{\ln{\left(2 \right)}}}}}{\ln{\left(2 \right)}}$$

Dolayısıyla,

$$\int{2^{x} x d x} = \frac{2^{x} x}{\ln{\left(2 \right)}} - \frac{2^{x}}{\ln{\left(2 \right)}^{2}}$$

Sadeleştirin:

$$\int{2^{x} x d x} = \frac{2^{x} \left(x \ln{\left(2 \right)} - 1\right)}{\ln{\left(2 \right)}^{2}}$$

İntegrasyon sabitini ekleyin:

$$\int{2^{x} x d x} = \frac{2^{x} \left(x \ln{\left(2 \right)} - 1\right)}{\ln{\left(2 \right)}^{2}}+C$$

Cevap

$$$\int 2^{x} x\, dx = \frac{2^{x} \left(x \ln\left(2\right) - 1\right)}{\ln^{2}\left(2\right)} + C$$$A


Please try a new game Rotatly