$$$x^{6} - \frac{1}{x^{21}}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$x^{6} - \frac{1}{x^{21}}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \left(x^{6} - \frac{1}{x^{21}}\right)\, dx$$$.

Çözüm

Her terimin integralini alın:

$${\color{red}{\int{\left(x^{6} - \frac{1}{x^{21}}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{x^{21}} d x} + \int{x^{6} d x}\right)}}$$

Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=6$$$ ile uygulayın:

$$- \int{\frac{1}{x^{21}} d x} + {\color{red}{\int{x^{6} d x}}}=- \int{\frac{1}{x^{21}} d x} + {\color{red}{\frac{x^{1 + 6}}{1 + 6}}}=- \int{\frac{1}{x^{21}} d x} + {\color{red}{\left(\frac{x^{7}}{7}\right)}}$$

Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=-21$$$ ile uygulayın:

$$\frac{x^{7}}{7} - {\color{red}{\int{\frac{1}{x^{21}} d x}}}=\frac{x^{7}}{7} - {\color{red}{\int{x^{-21} d x}}}=\frac{x^{7}}{7} - {\color{red}{\frac{x^{-21 + 1}}{-21 + 1}}}=\frac{x^{7}}{7} - {\color{red}{\left(- \frac{x^{-20}}{20}\right)}}=\frac{x^{7}}{7} - {\color{red}{\left(- \frac{1}{20 x^{20}}\right)}}$$

Dolayısıyla,

$$\int{\left(x^{6} - \frac{1}{x^{21}}\right)d x} = \frac{x^{7}}{7} + \frac{1}{20 x^{20}}$$

Sadeleştirin:

$$\int{\left(x^{6} - \frac{1}{x^{21}}\right)d x} = \frac{20 x^{27} + 7}{140 x^{20}}$$

İntegrasyon sabitini ekleyin:

$$\int{\left(x^{6} - \frac{1}{x^{21}}\right)d x} = \frac{20 x^{27} + 7}{140 x^{20}}+C$$

Cevap

$$$\int \left(x^{6} - \frac{1}{x^{21}}\right)\, dx = \frac{20 x^{27} + 7}{140 x^{20}} + C$$$A


Please try a new game Rotatly