$$$x^{2} - 38 \sin{\left(x \right)}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \left(x^{2} - 38 \sin{\left(x \right)}\right)\, dx$$$.
Çözüm
Her terimin integralini alın:
$${\color{red}{\int{\left(x^{2} - 38 \sin{\left(x \right)}\right)d x}}} = {\color{red}{\left(\int{x^{2} d x} - \int{38 \sin{\left(x \right)} d x}\right)}}$$
Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=2$$$ ile uygulayın:
$$- \int{38 \sin{\left(x \right)} d x} + {\color{red}{\int{x^{2} d x}}}=- \int{38 \sin{\left(x \right)} d x} + {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- \int{38 \sin{\left(x \right)} d x} + {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=38$$$ ve $$$f{\left(x \right)} = \sin{\left(x \right)}$$$ ile uygula:
$$\frac{x^{3}}{3} - {\color{red}{\int{38 \sin{\left(x \right)} d x}}} = \frac{x^{3}}{3} - {\color{red}{\left(38 \int{\sin{\left(x \right)} d x}\right)}}$$
Sinüsün integrali $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$\frac{x^{3}}{3} - 38 {\color{red}{\int{\sin{\left(x \right)} d x}}} = \frac{x^{3}}{3} - 38 {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
Dolayısıyla,
$$\int{\left(x^{2} - 38 \sin{\left(x \right)}\right)d x} = \frac{x^{3}}{3} + 38 \cos{\left(x \right)}$$
İntegrasyon sabitini ekleyin:
$$\int{\left(x^{2} - 38 \sin{\left(x \right)}\right)d x} = \frac{x^{3}}{3} + 38 \cos{\left(x \right)}+C$$
Cevap
$$$\int \left(x^{2} - 38 \sin{\left(x \right)}\right)\, dx = \left(\frac{x^{3}}{3} + 38 \cos{\left(x \right)}\right) + C$$$A