$$$x^{7} \left(x^{8} - 33\right)^{33}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int x^{7} \left(x^{8} - 33\right)^{33}\, dx$$$.
Çözüm
$$$u=x^{8} - 33$$$ olsun.
Böylece $$$du=\left(x^{8} - 33\right)^{\prime }dx = 8 x^{7} dx$$$ (adımlar » görülebilir) ve $$$x^{7} dx = \frac{du}{8}$$$ elde ederiz.
Dolayısıyla,
$${\color{red}{\int{x^{7} \left(x^{8} - 33\right)^{33} d x}}} = {\color{red}{\int{\frac{u^{33}}{8} d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{8}$$$ ve $$$f{\left(u \right)} = u^{33}$$$ ile uygula:
$${\color{red}{\int{\frac{u^{33}}{8} d u}}} = {\color{red}{\left(\frac{\int{u^{33} d u}}{8}\right)}}$$
Kuvvet kuralını $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=33$$$ ile uygulayın:
$$\frac{{\color{red}{\int{u^{33} d u}}}}{8}=\frac{{\color{red}{\frac{u^{1 + 33}}{1 + 33}}}}{8}=\frac{{\color{red}{\left(\frac{u^{34}}{34}\right)}}}{8}$$
Hatırlayın ki $$$u=x^{8} - 33$$$:
$$\frac{{\color{red}{u}}^{34}}{272} = \frac{{\color{red}{\left(x^{8} - 33\right)}}^{34}}{272}$$
Dolayısıyla,
$$\int{x^{7} \left(x^{8} - 33\right)^{33} d x} = \frac{\left(x^{8} - 33\right)^{34}}{272}$$
İntegrasyon sabitini ekleyin:
$$\int{x^{7} \left(x^{8} - 33\right)^{33} d x} = \frac{\left(x^{8} - 33\right)^{34}}{272}+C$$
Cevap
$$$\int x^{7} \left(x^{8} - 33\right)^{33}\, dx = \frac{\left(x^{8} - 33\right)^{34}}{272} + C$$$A