$$$x^{3} e^{- x} \sin{\left(2 \right)}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int x^{3} e^{- x} \sin{\left(2 \right)}\, dx$$$.
Çözüm
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\sin{\left(2 \right)}$$$ ve $$$f{\left(x \right)} = x^{3} e^{- x}$$$ ile uygula:
$${\color{red}{\int{x^{3} e^{- x} \sin{\left(2 \right)} d x}}} = {\color{red}{\sin{\left(2 \right)} \int{x^{3} e^{- x} d x}}}$$
$$$\int{x^{3} e^{- x} d x}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.
$$$\operatorname{u}=x^{3}$$$ ve $$$\operatorname{dv}=e^{- x} dx$$$ olsun.
O halde $$$\operatorname{du}=\left(x^{3}\right)^{\prime }dx=3 x^{2} dx$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{e^{- x} d x}=- e^{- x}$$$ (adımlar için bkz. »).
O halde,
$$\sin{\left(2 \right)} {\color{red}{\int{x^{3} e^{- x} d x}}}=\sin{\left(2 \right)} {\color{red}{\left(x^{3} \cdot \left(- e^{- x}\right)-\int{\left(- e^{- x}\right) \cdot 3 x^{2} d x}\right)}}=\sin{\left(2 \right)} {\color{red}{\left(- x^{3} e^{- x} - \int{\left(- 3 x^{2} e^{- x}\right)d x}\right)}}$$
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=-3$$$ ve $$$f{\left(x \right)} = x^{2} e^{- x}$$$ ile uygula:
$$\sin{\left(2 \right)} \left(- x^{3} e^{- x} - {\color{red}{\int{\left(- 3 x^{2} e^{- x}\right)d x}}}\right) = \sin{\left(2 \right)} \left(- x^{3} e^{- x} - {\color{red}{\left(- 3 \int{x^{2} e^{- x} d x}\right)}}\right)$$
$$$\int{x^{2} e^{- x} d x}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.
$$$\operatorname{u}=x^{2}$$$ ve $$$\operatorname{dv}=e^{- x} dx$$$ olsun.
O halde $$$\operatorname{du}=\left(x^{2}\right)^{\prime }dx=2 x dx$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{e^{- x} d x}=- e^{- x}$$$ (adımlar için bkz. »).
Dolayısıyla,
$$\sin{\left(2 \right)} \left(- x^{3} e^{- x} + 3 {\color{red}{\int{x^{2} e^{- x} d x}}}\right)=\sin{\left(2 \right)} \left(- x^{3} e^{- x} + 3 {\color{red}{\left(x^{2} \cdot \left(- e^{- x}\right)-\int{\left(- e^{- x}\right) \cdot 2 x d x}\right)}}\right)=\sin{\left(2 \right)} \left(- x^{3} e^{- x} + 3 {\color{red}{\left(- x^{2} e^{- x} - \int{\left(- 2 x e^{- x}\right)d x}\right)}}\right)$$
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=-2$$$ ve $$$f{\left(x \right)} = x e^{- x}$$$ ile uygula:
$$\sin{\left(2 \right)} \left(- x^{3} e^{- x} - 3 x^{2} e^{- x} - 3 {\color{red}{\int{\left(- 2 x e^{- x}\right)d x}}}\right) = \sin{\left(2 \right)} \left(- x^{3} e^{- x} - 3 x^{2} e^{- x} - 3 {\color{red}{\left(- 2 \int{x e^{- x} d x}\right)}}\right)$$
$$$\int{x e^{- x} d x}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.
$$$\operatorname{u}=x$$$ ve $$$\operatorname{dv}=e^{- x} dx$$$ olsun.
O halde $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{e^{- x} d x}=- e^{- x}$$$ (adımlar için bkz. »).
O halde,
$$\sin{\left(2 \right)} \left(- x^{3} e^{- x} - 3 x^{2} e^{- x} + 6 {\color{red}{\int{x e^{- x} d x}}}\right)=\sin{\left(2 \right)} \left(- x^{3} e^{- x} - 3 x^{2} e^{- x} + 6 {\color{red}{\left(x \cdot \left(- e^{- x}\right)-\int{\left(- e^{- x}\right) \cdot 1 d x}\right)}}\right)=\sin{\left(2 \right)} \left(- x^{3} e^{- x} - 3 x^{2} e^{- x} + 6 {\color{red}{\left(- x e^{- x} - \int{\left(- e^{- x}\right)d x}\right)}}\right)$$
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=-1$$$ ve $$$f{\left(x \right)} = e^{- x}$$$ ile uygula:
$$\sin{\left(2 \right)} \left(- x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} - 6 {\color{red}{\int{\left(- e^{- x}\right)d x}}}\right) = \sin{\left(2 \right)} \left(- x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} - 6 {\color{red}{\left(- \int{e^{- x} d x}\right)}}\right)$$
$$$u=- x$$$ olsun.
Böylece $$$du=\left(- x\right)^{\prime }dx = - dx$$$ (adımlar » görülebilir) ve $$$dx = - du$$$ elde ederiz.
İntegral şu şekilde yeniden yazılabilir:
$$\sin{\left(2 \right)} \left(- x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} + 6 {\color{red}{\int{e^{- x} d x}}}\right) = \sin{\left(2 \right)} \left(- x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} + 6 {\color{red}{\int{\left(- e^{u}\right)d u}}}\right)$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=-1$$$ ve $$$f{\left(u \right)} = e^{u}$$$ ile uygula:
$$\sin{\left(2 \right)} \left(- x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} + 6 {\color{red}{\int{\left(- e^{u}\right)d u}}}\right) = \sin{\left(2 \right)} \left(- x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} + 6 {\color{red}{\left(- \int{e^{u} d u}\right)}}\right)$$
Üstel fonksiyonun integrali $$$\int{e^{u} d u} = e^{u}$$$:
$$\sin{\left(2 \right)} \left(- x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} - 6 {\color{red}{\int{e^{u} d u}}}\right) = \sin{\left(2 \right)} \left(- x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} - 6 {\color{red}{e^{u}}}\right)$$
Hatırlayın ki $$$u=- x$$$:
$$\sin{\left(2 \right)} \left(- x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} - 6 e^{{\color{red}{u}}}\right) = \sin{\left(2 \right)} \left(- x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} - 6 e^{{\color{red}{\left(- x\right)}}}\right)$$
Dolayısıyla,
$$\int{x^{3} e^{- x} \sin{\left(2 \right)} d x} = \left(- x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} - 6 e^{- x}\right) \sin{\left(2 \right)}$$
Sadeleştirin:
$$\int{x^{3} e^{- x} \sin{\left(2 \right)} d x} = - \left(x^{3} + 3 x^{2} + 6 x + 6\right) e^{- x} \sin{\left(2 \right)}$$
İntegrasyon sabitini ekleyin:
$$\int{x^{3} e^{- x} \sin{\left(2 \right)} d x} = - \left(x^{3} + 3 x^{2} + 6 x + 6\right) e^{- x} \sin{\left(2 \right)}+C$$
Cevap
$$$\int x^{3} e^{- x} \sin{\left(2 \right)}\, dx = - \left(x^{3} + 3 x^{2} + 6 x + 6\right) e^{- x} \sin{\left(2 \right)} + C$$$A