$$$\sqrt{x^{2} - 25}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \sqrt{x^{2} - 25}\, dx$$$.
Çözüm
$$$x=5 \cosh{\left(u \right)}$$$ olsun.
O halde $$$dx=\left(5 \cosh{\left(u \right)}\right)^{\prime }du = 5 \sinh{\left(u \right)} du$$$ (adımlar » görülebilir).
Ayrıca, buradan $$$u=\operatorname{acosh}{\left(\frac{x}{5} \right)}$$$ elde edilir.
O halde,
$$$\sqrt{x^{2} - 25} = \sqrt{25 \cosh^{2}{\left( u \right)} - 25}$$$
Özdeşliği kullanın: $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$
$$$\sqrt{25 \cosh^{2}{\left( u \right)} - 25}=5 \sqrt{\cosh^{2}{\left( u \right)} - 1}=5 \sqrt{\sinh^{2}{\left( u \right)}}$$$
$$$\sinh{\left( u \right)} \ge 0$$$ olduğunu varsayarsak, aşağıdakileri elde ederiz:
$$$5 \sqrt{\sinh^{2}{\left( u \right)}} = 5 \sinh{\left( u \right)}$$$
Dolayısıyla,
$${\color{red}{\int{\sqrt{x^{2} - 25} d x}}} = {\color{red}{\int{25 \sinh^{2}{\left(u \right)} d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=25$$$ ve $$$f{\left(u \right)} = \sinh^{2}{\left(u \right)}$$$ ile uygula:
$${\color{red}{\int{25 \sinh^{2}{\left(u \right)} d u}}} = {\color{red}{\left(25 \int{\sinh^{2}{\left(u \right)} d u}\right)}}$$
Kuvvet indirgeme formülü $$$\sinh^{2}{\left(\alpha \right)} = \frac{\cosh{\left(2 \alpha \right)}}{2} - \frac{1}{2}$$$'i $$$\alpha= u $$$ ile uygula:
$$25 {\color{red}{\int{\sinh^{2}{\left(u \right)} d u}}} = 25 {\color{red}{\int{\left(\frac{\cosh{\left(2 u \right)}}{2} - \frac{1}{2}\right)d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(u \right)} = \cosh{\left(2 u \right)} - 1$$$ ile uygula:
$$25 {\color{red}{\int{\left(\frac{\cosh{\left(2 u \right)}}{2} - \frac{1}{2}\right)d u}}} = 25 {\color{red}{\left(\frac{\int{\left(\cosh{\left(2 u \right)} - 1\right)d u}}{2}\right)}}$$
Her terimin integralini alın:
$$\frac{25 {\color{red}{\int{\left(\cosh{\left(2 u \right)} - 1\right)d u}}}}{2} = \frac{25 {\color{red}{\left(- \int{1 d u} + \int{\cosh{\left(2 u \right)} d u}\right)}}}{2}$$
$$$c=1$$$ kullanarak $$$\int c\, du = c u$$$ sabit kuralını uygula:
$$\frac{25 \int{\cosh{\left(2 u \right)} d u}}{2} - \frac{25 {\color{red}{\int{1 d u}}}}{2} = \frac{25 \int{\cosh{\left(2 u \right)} d u}}{2} - \frac{25 {\color{red}{u}}}{2}$$
$$$v=2 u$$$ olsun.
Böylece $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (adımlar » görülebilir) ve $$$du = \frac{dv}{2}$$$ elde ederiz.
Dolayısıyla,
$$- \frac{25 u}{2} + \frac{25 {\color{red}{\int{\cosh{\left(2 u \right)} d u}}}}{2} = - \frac{25 u}{2} + \frac{25 {\color{red}{\int{\frac{\cosh{\left(v \right)}}{2} d v}}}}{2}$$
Sabit katsayı kuralı $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(v \right)} = \cosh{\left(v \right)}$$$ ile uygula:
$$- \frac{25 u}{2} + \frac{25 {\color{red}{\int{\frac{\cosh{\left(v \right)}}{2} d v}}}}{2} = - \frac{25 u}{2} + \frac{25 {\color{red}{\left(\frac{\int{\cosh{\left(v \right)} d v}}{2}\right)}}}{2}$$
Hiperbolik kosinüsün integrali $$$\int{\cosh{\left(v \right)} d v} = \sinh{\left(v \right)}$$$:
$$- \frac{25 u}{2} + \frac{25 {\color{red}{\int{\cosh{\left(v \right)} d v}}}}{4} = - \frac{25 u}{2} + \frac{25 {\color{red}{\sinh{\left(v \right)}}}}{4}$$
Hatırlayın ki $$$v=2 u$$$:
$$- \frac{25 u}{2} + \frac{25 \sinh{\left({\color{red}{v}} \right)}}{4} = - \frac{25 u}{2} + \frac{25 \sinh{\left({\color{red}{\left(2 u\right)}} \right)}}{4}$$
Hatırlayın ki $$$u=\operatorname{acosh}{\left(\frac{x}{5} \right)}$$$:
$$\frac{25 \sinh{\left(2 {\color{red}{u}} \right)}}{4} - \frac{25 {\color{red}{u}}}{2} = \frac{25 \sinh{\left(2 {\color{red}{\operatorname{acosh}{\left(\frac{x}{5} \right)}}} \right)}}{4} - \frac{25 {\color{red}{\operatorname{acosh}{\left(\frac{x}{5} \right)}}}}{2}$$
Dolayısıyla,
$$\int{\sqrt{x^{2} - 25} d x} = \frac{25 \sinh{\left(2 \operatorname{acosh}{\left(\frac{x}{5} \right)} \right)}}{4} - \frac{25 \operatorname{acosh}{\left(\frac{x}{5} \right)}}{2}$$
Formüller $$$\sin{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\sin{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\cos{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 1 - 2 \alpha^{2}$$$, $$$\cos{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, $$$\sinh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha^{2} + 1}$$$, $$$\sinh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha - 1} \sqrt{\alpha + 1}$$$, $$$\cosh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} + 1$$$, $$$\cosh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$ kullanılarak ifadeyi sadeleştirin:
$$\int{\sqrt{x^{2} - 25} d x} = \frac{5 x \sqrt{\frac{x}{5} - 1} \sqrt{\frac{x}{5} + 1}}{2} - \frac{25 \operatorname{acosh}{\left(\frac{x}{5} \right)}}{2}$$
Daha da sadeleştir:
$$\int{\sqrt{x^{2} - 25} d x} = \frac{x \sqrt{x - 5} \sqrt{x + 5} - 25 \operatorname{acosh}{\left(\frac{x}{5} \right)}}{2}$$
İntegrasyon sabitini ekleyin:
$$\int{\sqrt{x^{2} - 25} d x} = \frac{x \sqrt{x - 5} \sqrt{x + 5} - 25 \operatorname{acosh}{\left(\frac{x}{5} \right)}}{2}+C$$
Cevap
$$$\int \sqrt{x^{2} - 25}\, dx = \frac{x \sqrt{x - 5} \sqrt{x + 5} - 25 \operatorname{acosh}{\left(\frac{x}{5} \right)}}{2} + C$$$A