$$$\sqrt{4 - x^{2}}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \sqrt{4 - x^{2}}\, dx$$$.
Çözüm
$$$x=2 \sin{\left(u \right)}$$$ olsun.
O halde $$$dx=\left(2 \sin{\left(u \right)}\right)^{\prime }du = 2 \cos{\left(u \right)} du$$$ (adımlar » görülebilir).
Ayrıca, buradan $$$u=\operatorname{asin}{\left(\frac{x}{2} \right)}$$$ elde edilir.
Dolayısıyla,
$$$\sqrt{4 - x^{2}} = \sqrt{4 - 4 \sin^{2}{\left( u \right)}}$$$
Özdeşliği kullanın: $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$
$$$\sqrt{4 - 4 \sin^{2}{\left( u \right)}}=2 \sqrt{1 - \sin^{2}{\left( u \right)}}=2 \sqrt{\cos^{2}{\left( u \right)}}$$$
$$$\cos{\left( u \right)} \ge 0$$$ olduğunu varsayarsak, aşağıdakileri elde ederiz:
$$$2 \sqrt{\cos^{2}{\left( u \right)}} = 2 \cos{\left( u \right)}$$$
Dolayısıyla,
$${\color{red}{\int{\sqrt{4 - x^{2}} d x}}} = {\color{red}{\int{4 \cos^{2}{\left(u \right)} d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=4$$$ ve $$$f{\left(u \right)} = \cos^{2}{\left(u \right)}$$$ ile uygula:
$${\color{red}{\int{4 \cos^{2}{\left(u \right)} d u}}} = {\color{red}{\left(4 \int{\cos^{2}{\left(u \right)} d u}\right)}}$$
Kuvvet indirgeme formülü $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$'i $$$\alpha= u $$$ ile uygula:
$$4 {\color{red}{\int{\cos^{2}{\left(u \right)} d u}}} = 4 {\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(u \right)} = \cos{\left(2 u \right)} + 1$$$ ile uygula:
$$4 {\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}} = 4 {\color{red}{\left(\frac{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}{2}\right)}}$$
Her terimin integralini alın:
$$2 {\color{red}{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}} = 2 {\color{red}{\left(\int{1 d u} + \int{\cos{\left(2 u \right)} d u}\right)}}$$
$$$c=1$$$ kullanarak $$$\int c\, du = c u$$$ sabit kuralını uygula:
$$2 \int{\cos{\left(2 u \right)} d u} + 2 {\color{red}{\int{1 d u}}} = 2 \int{\cos{\left(2 u \right)} d u} + 2 {\color{red}{u}}$$
$$$v=2 u$$$ olsun.
Böylece $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (adımlar » görülebilir) ve $$$du = \frac{dv}{2}$$$ elde ederiz.
O halde,
$$2 u + 2 {\color{red}{\int{\cos{\left(2 u \right)} d u}}} = 2 u + 2 {\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}$$
Sabit katsayı kuralı $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(v \right)} = \cos{\left(v \right)}$$$ ile uygula:
$$2 u + 2 {\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}} = 2 u + 2 {\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}$$
Kosinüsün integrali $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:
$$2 u + {\color{red}{\int{\cos{\left(v \right)} d v}}} = 2 u + {\color{red}{\sin{\left(v \right)}}}$$
Hatırlayın ki $$$v=2 u$$$:
$$2 u + \sin{\left({\color{red}{v}} \right)} = 2 u + \sin{\left({\color{red}{\left(2 u\right)}} \right)}$$
Hatırlayın ki $$$u=\operatorname{asin}{\left(\frac{x}{2} \right)}$$$:
$$\sin{\left(2 {\color{red}{u}} \right)} + 2 {\color{red}{u}} = \sin{\left(2 {\color{red}{\operatorname{asin}{\left(\frac{x}{2} \right)}}} \right)} + 2 {\color{red}{\operatorname{asin}{\left(\frac{x}{2} \right)}}}$$
Dolayısıyla,
$$\int{\sqrt{4 - x^{2}} d x} = \sin{\left(2 \operatorname{asin}{\left(\frac{x}{2} \right)} \right)} + 2 \operatorname{asin}{\left(\frac{x}{2} \right)}$$
Formüller $$$\sin{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\sin{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\cos{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 1 - 2 \alpha^{2}$$$, $$$\cos{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, $$$\sinh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha^{2} + 1}$$$, $$$\sinh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha - 1} \sqrt{\alpha + 1}$$$, $$$\cosh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} + 1$$$, $$$\cosh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$ kullanılarak ifadeyi sadeleştirin:
$$\int{\sqrt{4 - x^{2}} d x} = x \sqrt{1 - \frac{x^{2}}{4}} + 2 \operatorname{asin}{\left(\frac{x}{2} \right)}$$
Daha da sadeleştir:
$$\int{\sqrt{4 - x^{2}} d x} = \frac{x \sqrt{4 - x^{2}}}{2} + 2 \operatorname{asin}{\left(\frac{x}{2} \right)}$$
İntegrasyon sabitini ekleyin:
$$\int{\sqrt{4 - x^{2}} d x} = \frac{x \sqrt{4 - x^{2}}}{2} + 2 \operatorname{asin}{\left(\frac{x}{2} \right)}+C$$
Cevap
$$$\int \sqrt{4 - x^{2}}\, dx = \left(\frac{x \sqrt{4 - x^{2}}}{2} + 2 \operatorname{asin}{\left(\frac{x}{2} \right)}\right) + C$$$A