$$$\sin{\left(2 \theta \right)} \cos{\left(\theta \right)}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \sin{\left(2 \theta \right)} \cos{\left(\theta \right)}\, d\theta$$$.
Çözüm
İntegralin içindeki ifadeyi $$$\alpha=2 \theta$$$ ve $$$\beta=\theta$$$ ile birlikte $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ formülünü kullanarak yeniden yazın:
$${\color{red}{\int{\sin{\left(2 \theta \right)} \cos{\left(\theta \right)} d \theta}}} = {\color{red}{\int{\left(\frac{\sin{\left(\theta \right)}}{2} + \frac{\sin{\left(3 \theta \right)}}{2}\right)d \theta}}}$$
Sabit katsayı kuralı $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(\theta \right)} = \sin{\left(\theta \right)} + \sin{\left(3 \theta \right)}$$$ ile uygula:
$${\color{red}{\int{\left(\frac{\sin{\left(\theta \right)}}{2} + \frac{\sin{\left(3 \theta \right)}}{2}\right)d \theta}}} = {\color{red}{\left(\frac{\int{\left(\sin{\left(\theta \right)} + \sin{\left(3 \theta \right)}\right)d \theta}}{2}\right)}}$$
Her terimin integralini alın:
$$\frac{{\color{red}{\int{\left(\sin{\left(\theta \right)} + \sin{\left(3 \theta \right)}\right)d \theta}}}}{2} = \frac{{\color{red}{\left(\int{\sin{\left(\theta \right)} d \theta} + \int{\sin{\left(3 \theta \right)} d \theta}\right)}}}{2}$$
Sinüsün integrali $$$\int{\sin{\left(\theta \right)} d \theta} = - \cos{\left(\theta \right)}$$$:
$$\frac{\int{\sin{\left(3 \theta \right)} d \theta}}{2} + \frac{{\color{red}{\int{\sin{\left(\theta \right)} d \theta}}}}{2} = \frac{\int{\sin{\left(3 \theta \right)} d \theta}}{2} + \frac{{\color{red}{\left(- \cos{\left(\theta \right)}\right)}}}{2}$$
$$$u=3 \theta$$$ olsun.
Böylece $$$du=\left(3 \theta\right)^{\prime }d\theta = 3 d\theta$$$ (adımlar » görülebilir) ve $$$d\theta = \frac{du}{3}$$$ elde ederiz.
İntegral şu şekilde yeniden yazılabilir:
$$- \frac{\cos{\left(\theta \right)}}{2} + \frac{{\color{red}{\int{\sin{\left(3 \theta \right)} d \theta}}}}{2} = - \frac{\cos{\left(\theta \right)}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}}{2}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{3}$$$ ve $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ ile uygula:
$$- \frac{\cos{\left(\theta \right)}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}}{2} = - \frac{\cos{\left(\theta \right)}}{2} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{3}\right)}}}{2}$$
Sinüsün integrali $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$- \frac{\cos{\left(\theta \right)}}{2} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{6} = - \frac{\cos{\left(\theta \right)}}{2} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{6}$$
Hatırlayın ki $$$u=3 \theta$$$:
$$- \frac{\cos{\left(\theta \right)}}{2} - \frac{\cos{\left({\color{red}{u}} \right)}}{6} = - \frac{\cos{\left(\theta \right)}}{2} - \frac{\cos{\left({\color{red}{\left(3 \theta\right)}} \right)}}{6}$$
Dolayısıyla,
$$\int{\sin{\left(2 \theta \right)} \cos{\left(\theta \right)} d \theta} = - \frac{\cos{\left(\theta \right)}}{2} - \frac{\cos{\left(3 \theta \right)}}{6}$$
İntegrasyon sabitini ekleyin:
$$\int{\sin{\left(2 \theta \right)} \cos{\left(\theta \right)} d \theta} = - \frac{\cos{\left(\theta \right)}}{2} - \frac{\cos{\left(3 \theta \right)}}{6}+C$$
Cevap
$$$\int \sin{\left(2 \theta \right)} \cos{\left(\theta \right)}\, d\theta = \left(- \frac{\cos{\left(\theta \right)}}{2} - \frac{\cos{\left(3 \theta \right)}}{6}\right) + C$$$A