$$$\sin{\left(5 x \right)} \cos^{2}{\left(5 x \right)}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\sin{\left(5 x \right)} \cos^{2}{\left(5 x \right)}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \sin{\left(5 x \right)} \cos^{2}{\left(5 x \right)}\, dx$$$.

Çözüm

$$$u=\cos{\left(5 x \right)}$$$ olsun.

Böylece $$$du=\left(\cos{\left(5 x \right)}\right)^{\prime }dx = - 5 \sin{\left(5 x \right)} dx$$$ (adımlar » görülebilir) ve $$$\sin{\left(5 x \right)} dx = - \frac{du}{5}$$$ elde ederiz.

İntegral şu şekilde yeniden yazılabilir:

$${\color{red}{\int{\sin{\left(5 x \right)} \cos^{2}{\left(5 x \right)} d x}}} = {\color{red}{\int{\left(- \frac{u^{2}}{5}\right)d u}}}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=- \frac{1}{5}$$$ ve $$$f{\left(u \right)} = u^{2}$$$ ile uygula:

$${\color{red}{\int{\left(- \frac{u^{2}}{5}\right)d u}}} = {\color{red}{\left(- \frac{\int{u^{2} d u}}{5}\right)}}$$

Kuvvet kuralını $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=2$$$ ile uygulayın:

$$- \frac{{\color{red}{\int{u^{2} d u}}}}{5}=- \frac{{\color{red}{\frac{u^{1 + 2}}{1 + 2}}}}{5}=- \frac{{\color{red}{\left(\frac{u^{3}}{3}\right)}}}{5}$$

Hatırlayın ki $$$u=\cos{\left(5 x \right)}$$$:

$$- \frac{{\color{red}{u}}^{3}}{15} = - \frac{{\color{red}{\cos{\left(5 x \right)}}}^{3}}{15}$$

Dolayısıyla,

$$\int{\sin{\left(5 x \right)} \cos^{2}{\left(5 x \right)} d x} = - \frac{\cos^{3}{\left(5 x \right)}}{15}$$

İntegrasyon sabitini ekleyin:

$$\int{\sin{\left(5 x \right)} \cos^{2}{\left(5 x \right)} d x} = - \frac{\cos^{3}{\left(5 x \right)}}{15}+C$$

Cevap

$$$\int \sin{\left(5 x \right)} \cos^{2}{\left(5 x \right)}\, dx = - \frac{\cos^{3}{\left(5 x \right)}}{15} + C$$$A


Please try a new game Rotatly