$$$\ln\left(10 x\right)$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \ln\left(10 x\right)\, dx$$$.
Çözüm
$$$u=10 x$$$ olsun.
Böylece $$$du=\left(10 x\right)^{\prime }dx = 10 dx$$$ (adımlar » görülebilir) ve $$$dx = \frac{du}{10}$$$ elde ederiz.
Dolayısıyla,
$${\color{red}{\int{\ln{\left(10 x \right)} d x}}} = {\color{red}{\int{\frac{\ln{\left(u \right)}}{10} d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{10}$$$ ve $$$f{\left(u \right)} = \ln{\left(u \right)}$$$ ile uygula:
$${\color{red}{\int{\frac{\ln{\left(u \right)}}{10} d u}}} = {\color{red}{\left(\frac{\int{\ln{\left(u \right)} d u}}{10}\right)}}$$
$$$\int{\ln{\left(u \right)} d u}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$ kullanın.
$$$\operatorname{g}=\ln{\left(u \right)}$$$ ve $$$\operatorname{dv}=du$$$ olsun.
O halde $$$\operatorname{dg}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{1 d u}=u$$$ (adımlar için bkz. »).
Dolayısıyla,
$$\frac{{\color{red}{\int{\ln{\left(u \right)} d u}}}}{10}=\frac{{\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}}{10}=\frac{{\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}}{10}$$
$$$c=1$$$ kullanarak $$$\int c\, du = c u$$$ sabit kuralını uygula:
$$\frac{u \ln{\left(u \right)}}{10} - \frac{{\color{red}{\int{1 d u}}}}{10} = \frac{u \ln{\left(u \right)}}{10} - \frac{{\color{red}{u}}}{10}$$
Hatırlayın ki $$$u=10 x$$$:
$$- \frac{{\color{red}{u}}}{10} + \frac{{\color{red}{u}} \ln{\left({\color{red}{u}} \right)}}{10} = - \frac{{\color{red}{\left(10 x\right)}}}{10} + \frac{{\color{red}{\left(10 x\right)}} \ln{\left({\color{red}{\left(10 x\right)}} \right)}}{10}$$
Dolayısıyla,
$$\int{\ln{\left(10 x \right)} d x} = x \ln{\left(10 x \right)} - x$$
Sadeleştirin:
$$\int{\ln{\left(10 x \right)} d x} = x \left(\ln{\left(x \right)} - 1 + \ln{\left(10 \right)}\right)$$
İntegrasyon sabitini ekleyin:
$$\int{\ln{\left(10 x \right)} d x} = x \left(\ln{\left(x \right)} - 1 + \ln{\left(10 \right)}\right)+C$$
Cevap
$$$\int \ln\left(10 x\right)\, dx = x \left(\ln\left(x\right) - 1 + \ln\left(10\right)\right) + C$$$A