$$$x$$$ değişkenine göre $$$x^{- a} \ln\left(z\right)$$$ fonksiyonunun integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int x^{- a} \ln\left(z\right)\, dx$$$.
Çözüm
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\ln{\left(z \right)}$$$ ve $$$f{\left(x \right)} = x^{- a}$$$ ile uygula:
$${\color{red}{\int{x^{- a} \ln{\left(z \right)} d x}}} = {\color{red}{\ln{\left(z \right)} \int{x^{- a} d x}}}$$
Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=- a$$$ ile uygulayın:
$$\ln{\left(z \right)} {\color{red}{\int{x^{- a} d x}}}=\ln{\left(z \right)} {\color{red}{\frac{x^{1 - a}}{1 - a}}}=\ln{\left(z \right)} {\color{red}{\frac{x^{1 - a}}{1 - a}}}$$
Dolayısıyla,
$$\int{x^{- a} \ln{\left(z \right)} d x} = \frac{x^{1 - a} \ln{\left(z \right)}}{1 - a}$$
Sadeleştirin:
$$\int{x^{- a} \ln{\left(z \right)} d x} = - \frac{x^{1 - a} \ln{\left(z \right)}}{a - 1}$$
İntegrasyon sabitini ekleyin:
$$\int{x^{- a} \ln{\left(z \right)} d x} = - \frac{x^{1 - a} \ln{\left(z \right)}}{a - 1}+C$$
Cevap
$$$\int x^{- a} \ln\left(z\right)\, dx = - \frac{x^{1 - a} \ln\left(z\right)}{a - 1} + C$$$A