$$$\frac{\ln\left(x^{3}\right)}{\ln\left(2\right)}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\frac{\ln\left(x^{3}\right)}{\ln\left(2\right)}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{3 \ln\left(x\right)}{\ln\left(2\right)}\, dx$$$.

Çözüm

Girdi yeniden yazıldı: $$$\int{\frac{\ln{\left(x^{3} \right)}}{\ln{\left(2 \right)}} d x}=\int{\frac{3 \ln{\left(x \right)}}{\ln{\left(2 \right)}} d x}$$$.

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{3}{\ln{\left(2 \right)}}$$$ ve $$$f{\left(x \right)} = \ln{\left(x \right)}$$$ ile uygula:

$${\color{red}{\int{\frac{3 \ln{\left(x \right)}}{\ln{\left(2 \right)}} d x}}} = {\color{red}{\left(\frac{3 \int{\ln{\left(x \right)} d x}}{\ln{\left(2 \right)}}\right)}}$$

$$$\int{\ln{\left(x \right)} d x}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.

$$$\operatorname{u}=\ln{\left(x \right)}$$$ ve $$$\operatorname{dv}=dx$$$ olsun.

O halde $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{1 d x}=x$$$ (adımlar için bkz. »).

İntegral şu hale gelir

$$\frac{3 {\color{red}{\int{\ln{\left(x \right)} d x}}}}{\ln{\left(2 \right)}}=\frac{3 {\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}}{\ln{\left(2 \right)}}=\frac{3 {\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}}{\ln{\left(2 \right)}}$$

$$$c=1$$$ kullanarak $$$\int c\, dx = c x$$$ sabit kuralını uygula:

$$\frac{3 \left(x \ln{\left(x \right)} - {\color{red}{\int{1 d x}}}\right)}{\ln{\left(2 \right)}} = \frac{3 \left(x \ln{\left(x \right)} - {\color{red}{x}}\right)}{\ln{\left(2 \right)}}$$

Dolayısıyla,

$$\int{\frac{3 \ln{\left(x \right)}}{\ln{\left(2 \right)}} d x} = \frac{3 \left(x \ln{\left(x \right)} - x\right)}{\ln{\left(2 \right)}}$$

Sadeleştirin:

$$\int{\frac{3 \ln{\left(x \right)}}{\ln{\left(2 \right)}} d x} = \frac{3 x \left(\ln{\left(x \right)} - 1\right)}{\ln{\left(2 \right)}}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{3 \ln{\left(x \right)}}{\ln{\left(2 \right)}} d x} = \frac{3 x \left(\ln{\left(x \right)} - 1\right)}{\ln{\left(2 \right)}}+C$$

Cevap

$$$\int \frac{3 \ln\left(x\right)}{\ln\left(2\right)}\, dx = \frac{3 x \left(\ln\left(x\right) - 1\right)}{\ln\left(2\right)} + C$$$A


Please try a new game Rotatly