$$$\ln\left(\frac{x}{2} - 1\right)$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\ln\left(\frac{x}{2} - 1\right)$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \ln\left(\frac{x}{2} - 1\right)\, dx$$$.

Çözüm

$$$u=\frac{x}{2} - 1$$$ olsun.

Böylece $$$du=\left(\frac{x}{2} - 1\right)^{\prime }dx = \frac{dx}{2}$$$ (adımlar » görülebilir) ve $$$dx = 2 du$$$ elde ederiz.

Dolayısıyla,

$${\color{red}{\int{\ln{\left(\frac{x}{2} - 1 \right)} d x}}} = {\color{red}{\int{2 \ln{\left(u \right)} d u}}}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=2$$$ ve $$$f{\left(u \right)} = \ln{\left(u \right)}$$$ ile uygula:

$${\color{red}{\int{2 \ln{\left(u \right)} d u}}} = {\color{red}{\left(2 \int{\ln{\left(u \right)} d u}\right)}}$$

$$$\int{\ln{\left(u \right)} d u}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$ kullanın.

$$$\operatorname{g}=\ln{\left(u \right)}$$$ ve $$$\operatorname{dv}=du$$$ olsun.

O halde $$$\operatorname{dg}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{1 d u}=u$$$ (adımlar için bkz. »).

O halde,

$$2 {\color{red}{\int{\ln{\left(u \right)} d u}}}=2 {\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}=2 {\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}$$

$$$c=1$$$ kullanarak $$$\int c\, du = c u$$$ sabit kuralını uygula:

$$2 u \ln{\left(u \right)} - 2 {\color{red}{\int{1 d u}}} = 2 u \ln{\left(u \right)} - 2 {\color{red}{u}}$$

Hatırlayın ki $$$u=\frac{x}{2} - 1$$$:

$$- 2 {\color{red}{u}} + 2 {\color{red}{u}} \ln{\left({\color{red}{u}} \right)} = - 2 {\color{red}{\left(\frac{x}{2} - 1\right)}} + 2 {\color{red}{\left(\frac{x}{2} - 1\right)}} \ln{\left({\color{red}{\left(\frac{x}{2} - 1\right)}} \right)}$$

Dolayısıyla,

$$\int{\ln{\left(\frac{x}{2} - 1 \right)} d x} = - x + 2 \left(\frac{x}{2} - 1\right) \ln{\left(\frac{x}{2} - 1 \right)} + 2$$

Sadeleştirin:

$$\int{\ln{\left(\frac{x}{2} - 1 \right)} d x} = - x + \left(x - 2\right) \ln{\left(\frac{x}{2} - 1 \right)} + 2$$

İntegrasyon sabitini ekleyin (ve ifadeden sabit terimi kaldırın):

$$\int{\ln{\left(\frac{x}{2} - 1 \right)} d x} = - x + \left(x - 2\right) \ln{\left(\frac{x}{2} - 1 \right)}+C$$

Cevap

$$$\int \ln\left(\frac{x}{2} - 1\right)\, dx = \left(- x + \left(x - 2\right) \ln\left(\frac{x}{2} - 1\right)\right) + C$$$A


Please try a new game Rotatly