$$$\frac{\ln\left(x\right)}{5}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\frac{\ln\left(x\right)}{5}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{\ln\left(x\right)}{5}\, dx$$$.

Çözüm

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{1}{5}$$$ ve $$$f{\left(x \right)} = \ln{\left(x \right)}$$$ ile uygula:

$${\color{red}{\int{\frac{\ln{\left(x \right)}}{5} d x}}} = {\color{red}{\left(\frac{\int{\ln{\left(x \right)} d x}}{5}\right)}}$$

$$$\int{\ln{\left(x \right)} d x}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.

$$$\operatorname{u}=\ln{\left(x \right)}$$$ ve $$$\operatorname{dv}=dx$$$ olsun.

O halde $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{1 d x}=x$$$ (adımlar için bkz. »).

O halde,

$$\frac{{\color{red}{\int{\ln{\left(x \right)} d x}}}}{5}=\frac{{\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}}{5}=\frac{{\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}}{5}$$

$$$c=1$$$ kullanarak $$$\int c\, dx = c x$$$ sabit kuralını uygula:

$$\frac{x \ln{\left(x \right)}}{5} - \frac{{\color{red}{\int{1 d x}}}}{5} = \frac{x \ln{\left(x \right)}}{5} - \frac{{\color{red}{x}}}{5}$$

Dolayısıyla,

$$\int{\frac{\ln{\left(x \right)}}{5} d x} = \frac{x \ln{\left(x \right)}}{5} - \frac{x}{5}$$

Sadeleştirin:

$$\int{\frac{\ln{\left(x \right)}}{5} d x} = \frac{x \left(\ln{\left(x \right)} - 1\right)}{5}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{\ln{\left(x \right)}}{5} d x} = \frac{x \left(\ln{\left(x \right)} - 1\right)}{5}+C$$

Cevap

$$$\int \frac{\ln\left(x\right)}{5}\, dx = \frac{x \left(\ln\left(x\right) - 1\right)}{5} + C$$$A


Please try a new game Rotatly