$$$e^{x} \sin{\left(\frac{x}{2} \right)}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int e^{x} \sin{\left(\frac{x}{2} \right)}\, dx$$$.
Çözüm
$$$\int{e^{x} \sin{\left(\frac{x}{2} \right)} d x}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.
$$$\operatorname{u}=\sin{\left(\frac{x}{2} \right)}$$$ ve $$$\operatorname{dv}=e^{x} dx$$$ olsun.
O halde $$$\operatorname{du}=\left(\sin{\left(\frac{x}{2} \right)}\right)^{\prime }dx=\frac{\cos{\left(\frac{x}{2} \right)}}{2} dx$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{e^{x} d x}=e^{x}$$$ (adımlar için bkz. »).
İntegral şu şekilde yeniden yazılabilir:
$${\color{red}{\int{e^{x} \sin{\left(\frac{x}{2} \right)} d x}}}={\color{red}{\left(\sin{\left(\frac{x}{2} \right)} \cdot e^{x}-\int{e^{x} \cdot \frac{\cos{\left(\frac{x}{2} \right)}}{2} d x}\right)}}={\color{red}{\left(e^{x} \sin{\left(\frac{x}{2} \right)} - \int{\frac{e^{x} \cos{\left(\frac{x}{2} \right)}}{2} d x}\right)}}$$
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(x \right)} = e^{x} \cos{\left(\frac{x}{2} \right)}$$$ ile uygula:
$$e^{x} \sin{\left(\frac{x}{2} \right)} - {\color{red}{\int{\frac{e^{x} \cos{\left(\frac{x}{2} \right)}}{2} d x}}} = e^{x} \sin{\left(\frac{x}{2} \right)} - {\color{red}{\left(\frac{\int{e^{x} \cos{\left(\frac{x}{2} \right)} d x}}{2}\right)}}$$
$$$\int{e^{x} \cos{\left(\frac{x}{2} \right)} d x}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.
$$$\operatorname{u}=\cos{\left(\frac{x}{2} \right)}$$$ ve $$$\operatorname{dv}=e^{x} dx$$$ olsun.
O halde $$$\operatorname{du}=\left(\cos{\left(\frac{x}{2} \right)}\right)^{\prime }dx=- \frac{\sin{\left(\frac{x}{2} \right)}}{2} dx$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{e^{x} d x}=e^{x}$$$ (adımlar için bkz. »).
İntegral şu hale gelir
$$e^{x} \sin{\left(\frac{x}{2} \right)} - \frac{{\color{red}{\int{e^{x} \cos{\left(\frac{x}{2} \right)} d x}}}}{2}=e^{x} \sin{\left(\frac{x}{2} \right)} - \frac{{\color{red}{\left(\cos{\left(\frac{x}{2} \right)} \cdot e^{x}-\int{e^{x} \cdot \left(- \frac{\sin{\left(\frac{x}{2} \right)}}{2}\right) d x}\right)}}}{2}=e^{x} \sin{\left(\frac{x}{2} \right)} - \frac{{\color{red}{\left(e^{x} \cos{\left(\frac{x}{2} \right)} - \int{\left(- \frac{e^{x} \sin{\left(\frac{x}{2} \right)}}{2}\right)d x}\right)}}}{2}$$
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=- \frac{1}{2}$$$ ve $$$f{\left(x \right)} = e^{x} \sin{\left(\frac{x}{2} \right)}$$$ ile uygula:
$$e^{x} \sin{\left(\frac{x}{2} \right)} - \frac{e^{x} \cos{\left(\frac{x}{2} \right)}}{2} + \frac{{\color{red}{\int{\left(- \frac{e^{x} \sin{\left(\frac{x}{2} \right)}}{2}\right)d x}}}}{2} = e^{x} \sin{\left(\frac{x}{2} \right)} - \frac{e^{x} \cos{\left(\frac{x}{2} \right)}}{2} + \frac{{\color{red}{\left(- \frac{\int{e^{x} \sin{\left(\frac{x}{2} \right)} d x}}{2}\right)}}}{2}$$
Daha önce gördüğümüz bir integrale ulaştık.
Böylece, integrale ilişkin aşağıdaki basit denklemi elde ettik:
$$\int{e^{x} \sin{\left(\frac{x}{2} \right)} d x} = e^{x} \sin{\left(\frac{x}{2} \right)} - \frac{e^{x} \cos{\left(\frac{x}{2} \right)}}{2} - \frac{\int{e^{x} \sin{\left(\frac{x}{2} \right)} d x}}{4}$$
Çözdüğümüzde, şunu elde ederiz
$$\int{e^{x} \sin{\left(\frac{x}{2} \right)} d x} = \frac{2 \left(2 \sin{\left(\frac{x}{2} \right)} - \cos{\left(\frac{x}{2} \right)}\right) e^{x}}{5}$$
Dolayısıyla,
$$\int{e^{x} \sin{\left(\frac{x}{2} \right)} d x} = \frac{2 \left(2 \sin{\left(\frac{x}{2} \right)} - \cos{\left(\frac{x}{2} \right)}\right) e^{x}}{5}$$
İntegrasyon sabitini ekleyin:
$$\int{e^{x} \sin{\left(\frac{x}{2} \right)} d x} = \frac{2 \left(2 \sin{\left(\frac{x}{2} \right)} - \cos{\left(\frac{x}{2} \right)}\right) e^{x}}{5}+C$$
Cevap
$$$\int e^{x} \sin{\left(\frac{x}{2} \right)}\, dx = \frac{2 \left(2 \sin{\left(\frac{x}{2} \right)} - \cos{\left(\frac{x}{2} \right)}\right) e^{x}}{5} + C$$$A