$$$e^{x} \cosh{\left(x \right)}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$e^{x} \cosh{\left(x \right)}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int e^{x} \cosh{\left(x \right)}\, dx$$$.

Çözüm

Hiperbolik fonksiyonu üstel fonksiyon cinsinden yeniden yazın.:

$${\color{red}{\int{e^{x} \cosh{\left(x \right)} d x}}} = {\color{red}{\int{\left(\frac{e^{x}}{2} + \frac{e^{- x}}{2}\right) e^{x} d x}}}$$

İntegranı sadeleştirin:

$${\color{red}{\int{\left(\frac{e^{x}}{2} + \frac{e^{- x}}{2}\right) e^{x} d x}}} = {\color{red}{\int{\frac{\left(e^{x} + e^{- x}\right) e^{x}}{2} d x}}}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(x \right)} = \left(e^{x} + e^{- x}\right) e^{x}$$$ ile uygula:

$${\color{red}{\int{\frac{\left(e^{x} + e^{- x}\right) e^{x}}{2} d x}}} = {\color{red}{\left(\frac{\int{\left(e^{x} + e^{- x}\right) e^{x} d x}}{2}\right)}}$$

Simplify:

$$\frac{{\color{red}{\int{\left(e^{x} + e^{- x}\right) e^{x} d x}}}}{2} = \frac{{\color{red}{\int{\left(e^{2 x} + 1\right)d x}}}}{2}$$

Her terimin integralini alın:

$$\frac{{\color{red}{\int{\left(e^{2 x} + 1\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{1 d x} + \int{e^{2 x} d x}\right)}}}{2}$$

$$$c=1$$$ kullanarak $$$\int c\, dx = c x$$$ sabit kuralını uygula:

$$\frac{\int{e^{2 x} d x}}{2} + \frac{{\color{red}{\int{1 d x}}}}{2} = \frac{\int{e^{2 x} d x}}{2} + \frac{{\color{red}{x}}}{2}$$

$$$u=2 x$$$ olsun.

Böylece $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (adımlar » görülebilir) ve $$$dx = \frac{du}{2}$$$ elde ederiz.

O halde,

$$\frac{x}{2} + \frac{{\color{red}{\int{e^{2 x} d x}}}}{2} = \frac{x}{2} + \frac{{\color{red}{\int{\frac{e^{u}}{2} d u}}}}{2}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(u \right)} = e^{u}$$$ ile uygula:

$$\frac{x}{2} + \frac{{\color{red}{\int{\frac{e^{u}}{2} d u}}}}{2} = \frac{x}{2} + \frac{{\color{red}{\left(\frac{\int{e^{u} d u}}{2}\right)}}}{2}$$

Üstel fonksiyonun integrali $$$\int{e^{u} d u} = e^{u}$$$:

$$\frac{x}{2} + \frac{{\color{red}{\int{e^{u} d u}}}}{4} = \frac{x}{2} + \frac{{\color{red}{e^{u}}}}{4}$$

Hatırlayın ki $$$u=2 x$$$:

$$\frac{x}{2} + \frac{e^{{\color{red}{u}}}}{4} = \frac{x}{2} + \frac{e^{{\color{red}{\left(2 x\right)}}}}{4}$$

Dolayısıyla,

$$\int{e^{x} \cosh{\left(x \right)} d x} = \frac{x}{2} + \frac{e^{2 x}}{4}$$

İntegrasyon sabitini ekleyin:

$$\int{e^{x} \cosh{\left(x \right)} d x} = \frac{x}{2} + \frac{e^{2 x}}{4}+C$$

Cevap

$$$\int e^{x} \cosh{\left(x \right)}\, dx = \left(\frac{x}{2} + \frac{e^{2 x}}{4}\right) + C$$$A


Please try a new game Rotatly