$$$e^{\frac{y^{2}}{2}}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int e^{\frac{y^{2}}{2}}\, dy$$$.
Çözüm
$$$u=\frac{\sqrt{2} y}{2}$$$ olsun.
Böylece $$$du=\left(\frac{\sqrt{2} y}{2}\right)^{\prime }dy = \frac{\sqrt{2}}{2} dy$$$ (adımlar » görülebilir) ve $$$dy = \sqrt{2} du$$$ elde ederiz.
O halde,
$${\color{red}{\int{e^{\frac{y^{2}}{2}} d y}}} = {\color{red}{\int{\sqrt{2} e^{u^{2}} d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\sqrt{2}$$$ ve $$$f{\left(u \right)} = e^{u^{2}}$$$ ile uygula:
$${\color{red}{\int{\sqrt{2} e^{u^{2}} d u}}} = {\color{red}{\sqrt{2} \int{e^{u^{2}} d u}}}$$
Bu integralin (İmajiner Hata Fonksiyonu) kapalı biçimli bir ifadesi yok:
$$\sqrt{2} {\color{red}{\int{e^{u^{2}} d u}}} = \sqrt{2} {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erfi}{\left(u \right)}}{2}\right)}}$$
Hatırlayın ki $$$u=\frac{\sqrt{2} y}{2}$$$:
$$\frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left({\color{red}{u}} \right)}}{2} = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left({\color{red}{\left(\frac{\sqrt{2} y}{2}\right)}} \right)}}{2}$$
Dolayısıyla,
$$\int{e^{\frac{y^{2}}{2}} d y} = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left(\frac{\sqrt{2} y}{2} \right)}}{2}$$
İntegrasyon sabitini ekleyin:
$$\int{e^{\frac{y^{2}}{2}} d y} = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left(\frac{\sqrt{2} y}{2} \right)}}{2}+C$$
Cevap
$$$\int e^{\frac{y^{2}}{2}}\, dy = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left(\frac{\sqrt{2} y}{2} \right)}}{2} + C$$$A