$$$\frac{\sqrt{7}}{7 \sqrt{y}}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\frac{\sqrt{7}}{7 \sqrt{y}}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{\sqrt{7}}{7 \sqrt{y}}\, dy$$$.

Çözüm

Sabit katsayı kuralı $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$'i $$$c=\frac{\sqrt{7}}{7}$$$ ve $$$f{\left(y \right)} = \frac{1}{\sqrt{y}}$$$ ile uygula:

$${\color{red}{\int{\frac{\sqrt{7}}{7 \sqrt{y}} d y}}} = {\color{red}{\left(\frac{\sqrt{7} \int{\frac{1}{\sqrt{y}} d y}}{7}\right)}}$$

Kuvvet kuralını $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=- \frac{1}{2}$$$ ile uygulayın:

$$\frac{\sqrt{7} {\color{red}{\int{\frac{1}{\sqrt{y}} d y}}}}{7}=\frac{\sqrt{7} {\color{red}{\int{y^{- \frac{1}{2}} d y}}}}{7}=\frac{\sqrt{7} {\color{red}{\frac{y^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}}{7}=\frac{\sqrt{7} {\color{red}{\left(2 y^{\frac{1}{2}}\right)}}}{7}=\frac{\sqrt{7} {\color{red}{\left(2 \sqrt{y}\right)}}}{7}$$

Dolayısıyla,

$$\int{\frac{\sqrt{7}}{7 \sqrt{y}} d y} = \frac{2 \sqrt{7} \sqrt{y}}{7}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{\sqrt{7}}{7 \sqrt{y}} d y} = \frac{2 \sqrt{7} \sqrt{y}}{7}+C$$

Cevap

$$$\int \frac{\sqrt{7}}{7 \sqrt{y}}\, dy = \frac{2 \sqrt{7} \sqrt{y}}{7} + C$$$A


Please try a new game Rotatly