$$$u$$$ değişkenine göre $$$\frac{\cos{\left(u \right)}}{v}$$$ fonksiyonunun integrali

Hesaplayıcı, $$$u$$$ değişkenine göre $$$\frac{\cos{\left(u \right)}}{v}$$$ fonksiyonunun integralini/antitürevini bulur ve adım adım gösterir.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{\cos{\left(u \right)}}{v}\, du$$$.

Çözüm

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{v}$$$ ve $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ ile uygula:

$${\color{red}{\int{\frac{\cos{\left(u \right)}}{v} d u}}} = {\color{red}{\frac{\int{\cos{\left(u \right)} d u}}{v}}}$$

Kosinüsün integrali $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{v} = \frac{{\color{red}{\sin{\left(u \right)}}}}{v}$$

Dolayısıyla,

$$\int{\frac{\cos{\left(u \right)}}{v} d u} = \frac{\sin{\left(u \right)}}{v}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{\cos{\left(u \right)}}{v} d u} = \frac{\sin{\left(u \right)}}{v}+C$$

Cevap

$$$\int \frac{\cos{\left(u \right)}}{v}\, du = \frac{\sin{\left(u \right)}}{v} + C$$$A


Please try a new game Rotatly