$$$\cos{\left(\frac{2}{x} \right)}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \cos{\left(\frac{2}{x} \right)}\, dx$$$.
Çözüm
$$$\int{\cos{\left(\frac{2}{x} \right)} d x}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.
$$$\operatorname{u}=\cos{\left(\frac{2}{x} \right)}$$$ ve $$$\operatorname{dv}=dx$$$ olsun.
O halde $$$\operatorname{du}=\left(\cos{\left(\frac{2}{x} \right)}\right)^{\prime }dx=\frac{2 \sin{\left(\frac{2}{x} \right)}}{x^{2}} dx$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{1 d x}=x$$$ (adımlar için bkz. »).
İntegral şu şekilde yeniden yazılabilir:
$${\color{red}{\int{\cos{\left(\frac{2}{x} \right)} d x}}}={\color{red}{\left(\cos{\left(\frac{2}{x} \right)} \cdot x-\int{x \cdot \frac{2 \sin{\left(\frac{2}{x} \right)}}{x^{2}} d x}\right)}}={\color{red}{\left(x \cos{\left(\frac{2}{x} \right)} - \int{\frac{2 \sin{\left(\frac{2}{x} \right)}}{x} d x}\right)}}$$
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=2$$$ ve $$$f{\left(x \right)} = \frac{\sin{\left(\frac{2}{x} \right)}}{x}$$$ ile uygula:
$$x \cos{\left(\frac{2}{x} \right)} - {\color{red}{\int{\frac{2 \sin{\left(\frac{2}{x} \right)}}{x} d x}}} = x \cos{\left(\frac{2}{x} \right)} - {\color{red}{\left(2 \int{\frac{\sin{\left(\frac{2}{x} \right)}}{x} d x}\right)}}$$
$$$u=\frac{2}{x}$$$ olsun.
Böylece $$$du=\left(\frac{2}{x}\right)^{\prime }dx = - \frac{2}{x^{2}} dx$$$ (adımlar » görülebilir) ve $$$\frac{dx}{x^{2}} = - \frac{du}{2}$$$ elde ederiz.
İntegral şu şekilde yeniden yazılabilir:
$$x \cos{\left(\frac{2}{x} \right)} - 2 {\color{red}{\int{\frac{\sin{\left(\frac{2}{x} \right)}}{x} d x}}} = x \cos{\left(\frac{2}{x} \right)} - 2 {\color{red}{\int{\left(- \frac{\sin{\left(u \right)}}{u}\right)d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=-1$$$ ve $$$f{\left(u \right)} = \frac{\sin{\left(u \right)}}{u}$$$ ile uygula:
$$x \cos{\left(\frac{2}{x} \right)} - 2 {\color{red}{\int{\left(- \frac{\sin{\left(u \right)}}{u}\right)d u}}} = x \cos{\left(\frac{2}{x} \right)} - 2 {\color{red}{\left(- \int{\frac{\sin{\left(u \right)}}{u} d u}\right)}}$$
Bu integralin (Sinüs integrali) kapalı biçimli bir ifadesi yok:
$$x \cos{\left(\frac{2}{x} \right)} + 2 {\color{red}{\int{\frac{\sin{\left(u \right)}}{u} d u}}} = x \cos{\left(\frac{2}{x} \right)} + 2 {\color{red}{\operatorname{Si}{\left(u \right)}}}$$
Hatırlayın ki $$$u=\frac{2}{x}$$$:
$$x \cos{\left(\frac{2}{x} \right)} + 2 \operatorname{Si}{\left({\color{red}{u}} \right)} = x \cos{\left(\frac{2}{x} \right)} + 2 \operatorname{Si}{\left({\color{red}{\left(\frac{2}{x}\right)}} \right)}$$
Dolayısıyla,
$$\int{\cos{\left(\frac{2}{x} \right)} d x} = x \cos{\left(\frac{2}{x} \right)} + 2 \operatorname{Si}{\left(\frac{2}{x} \right)}$$
İntegrasyon sabitini ekleyin:
$$\int{\cos{\left(\frac{2}{x} \right)} d x} = x \cos{\left(\frac{2}{x} \right)} + 2 \operatorname{Si}{\left(\frac{2}{x} \right)}+C$$
Cevap
$$$\int \cos{\left(\frac{2}{x} \right)}\, dx = \left(x \cos{\left(\frac{2}{x} \right)} + 2 \operatorname{Si}{\left(\frac{2}{x} \right)}\right) + C$$$A