$$$\cos{\left(\sqrt{x} \right)}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \cos{\left(\sqrt{x} \right)}\, dx$$$.
Çözüm
$$$u=\sqrt{x}$$$ olsun.
Böylece $$$du=\left(\sqrt{x}\right)^{\prime }dx = \frac{1}{2 \sqrt{x}} dx$$$ (adımlar » görülebilir) ve $$$\frac{dx}{\sqrt{x}} = 2 du$$$ elde ederiz.
O halde,
$${\color{red}{\int{\cos{\left(\sqrt{x} \right)} d x}}} = {\color{red}{\int{2 u \cos{\left(u \right)} d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=2$$$ ve $$$f{\left(u \right)} = u \cos{\left(u \right)}$$$ ile uygula:
$${\color{red}{\int{2 u \cos{\left(u \right)} d u}}} = {\color{red}{\left(2 \int{u \cos{\left(u \right)} d u}\right)}}$$
$$$\int{u \cos{\left(u \right)} d u}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$ kullanın.
$$$\operatorname{g}=u$$$ ve $$$\operatorname{dv}=\cos{\left(u \right)} du$$$ olsun.
O halde $$$\operatorname{dg}=\left(u\right)^{\prime }du=1 du$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{\cos{\left(u \right)} d u}=\sin{\left(u \right)}$$$ (adımlar için bkz. »).
Dolayısıyla,
$$2 {\color{red}{\int{u \cos{\left(u \right)} d u}}}=2 {\color{red}{\left(u \cdot \sin{\left(u \right)}-\int{\sin{\left(u \right)} \cdot 1 d u}\right)}}=2 {\color{red}{\left(u \sin{\left(u \right)} - \int{\sin{\left(u \right)} d u}\right)}}$$
Sinüsün integrali $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$2 u \sin{\left(u \right)} - 2 {\color{red}{\int{\sin{\left(u \right)} d u}}} = 2 u \sin{\left(u \right)} - 2 {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$
Hatırlayın ki $$$u=\sqrt{x}$$$:
$$2 \cos{\left({\color{red}{u}} \right)} + 2 {\color{red}{u}} \sin{\left({\color{red}{u}} \right)} = 2 \cos{\left({\color{red}{\sqrt{x}}} \right)} + 2 {\color{red}{\sqrt{x}}} \sin{\left({\color{red}{\sqrt{x}}} \right)}$$
Dolayısıyla,
$$\int{\cos{\left(\sqrt{x} \right)} d x} = 2 \sqrt{x} \sin{\left(\sqrt{x} \right)} + 2 \cos{\left(\sqrt{x} \right)}$$
Sadeleştirin:
$$\int{\cos{\left(\sqrt{x} \right)} d x} = 2 \left(\sqrt{x} \sin{\left(\sqrt{x} \right)} + \cos{\left(\sqrt{x} \right)}\right)$$
İntegrasyon sabitini ekleyin:
$$\int{\cos{\left(\sqrt{x} \right)} d x} = 2 \left(\sqrt{x} \sin{\left(\sqrt{x} \right)} + \cos{\left(\sqrt{x} \right)}\right)+C$$
Cevap
$$$\int \cos{\left(\sqrt{x} \right)}\, dx = 2 \left(\sqrt{x} \sin{\left(\sqrt{x} \right)} + \cos{\left(\sqrt{x} \right)}\right) + C$$$A