$$$\cos{\left(\frac{x^{2}}{18} \right)}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \cos{\left(\frac{x^{2}}{18} \right)}\, dx$$$.
Çözüm
$$$u=\frac{\sqrt{2} x}{6}$$$ olsun.
Böylece $$$du=\left(\frac{\sqrt{2} x}{6}\right)^{\prime }dx = \frac{\sqrt{2}}{6} dx$$$ (adımlar » görülebilir) ve $$$dx = 3 \sqrt{2} du$$$ elde ederiz.
İntegral şu şekilde yeniden yazılabilir:
$${\color{red}{\int{\cos{\left(\frac{x^{2}}{18} \right)} d x}}} = {\color{red}{\int{3 \sqrt{2} \cos{\left(u^{2} \right)} d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=3 \sqrt{2}$$$ ve $$$f{\left(u \right)} = \cos{\left(u^{2} \right)}$$$ ile uygula:
$${\color{red}{\int{3 \sqrt{2} \cos{\left(u^{2} \right)} d u}}} = {\color{red}{\left(3 \sqrt{2} \int{\cos{\left(u^{2} \right)} d u}\right)}}$$
Bu integralin (Fresnel Kosinüs İntegrali) kapalı biçimli bir ifadesi yok:
$$3 \sqrt{2} {\color{red}{\int{\cos{\left(u^{2} \right)} d u}}} = 3 \sqrt{2} {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} u}{\sqrt{\pi}}\right)}{2}\right)}}$$
Hatırlayın ki $$$u=\frac{\sqrt{2} x}{6}$$$:
$$3 \sqrt{\pi} C\left(\frac{\sqrt{2} {\color{red}{u}}}{\sqrt{\pi}}\right) = 3 \sqrt{\pi} C\left(\frac{\sqrt{2} {\color{red}{\left(\frac{\sqrt{2} x}{6}\right)}}}{\sqrt{\pi}}\right)$$
Dolayısıyla,
$$\int{\cos{\left(\frac{x^{2}}{18} \right)} d x} = 3 \sqrt{\pi} C\left(\frac{x}{3 \sqrt{\pi}}\right)$$
İntegrasyon sabitini ekleyin:
$$\int{\cos{\left(\frac{x^{2}}{18} \right)} d x} = 3 \sqrt{\pi} C\left(\frac{x}{3 \sqrt{\pi}}\right)+C$$
Cevap
$$$\int \cos{\left(\frac{x^{2}}{18} \right)}\, dx = 3 \sqrt{\pi} C\left(\frac{x}{3 \sqrt{\pi}}\right) + C$$$A