$$$\frac{\cos{\left(2 x \right)}}{2}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \frac{\cos{\left(2 x \right)}}{2}\, dx$$$.
Çözüm
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(x \right)} = \cos{\left(2 x \right)}$$$ ile uygula:
$${\color{red}{\int{\frac{\cos{\left(2 x \right)}}{2} d x}}} = {\color{red}{\left(\frac{\int{\cos{\left(2 x \right)} d x}}{2}\right)}}$$
$$$u=2 x$$$ olsun.
Böylece $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (adımlar » görülebilir) ve $$$dx = \frac{du}{2}$$$ elde ederiz.
İntegral şu şekilde yeniden yazılabilir:
$$\frac{{\color{red}{\int{\cos{\left(2 x \right)} d x}}}}{2} = \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ ile uygula:
$$\frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2} = \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{2}$$
Kosinüsün integrali $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{4} = \frac{{\color{red}{\sin{\left(u \right)}}}}{4}$$
Hatırlayın ki $$$u=2 x$$$:
$$\frac{\sin{\left({\color{red}{u}} \right)}}{4} = \frac{\sin{\left({\color{red}{\left(2 x\right)}} \right)}}{4}$$
Dolayısıyla,
$$\int{\frac{\cos{\left(2 x \right)}}{2} d x} = \frac{\sin{\left(2 x \right)}}{4}$$
İntegrasyon sabitini ekleyin:
$$\int{\frac{\cos{\left(2 x \right)}}{2} d x} = \frac{\sin{\left(2 x \right)}}{4}+C$$
Cevap
$$$\int \frac{\cos{\left(2 x \right)}}{2}\, dx = \frac{\sin{\left(2 x \right)}}{4} + C$$$A