$$$9 \sin{\left(3 x \right)}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$9 \sin{\left(3 x \right)}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int 9 \sin{\left(3 x \right)}\, dx$$$.

Çözüm

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=9$$$ ve $$$f{\left(x \right)} = \sin{\left(3 x \right)}$$$ ile uygula:

$${\color{red}{\int{9 \sin{\left(3 x \right)} d x}}} = {\color{red}{\left(9 \int{\sin{\left(3 x \right)} d x}\right)}}$$

$$$u=3 x$$$ olsun.

Böylece $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (adımlar » görülebilir) ve $$$dx = \frac{du}{3}$$$ elde ederiz.

Dolayısıyla,

$$9 {\color{red}{\int{\sin{\left(3 x \right)} d x}}} = 9 {\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{3}$$$ ve $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ ile uygula:

$$9 {\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}} = 9 {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{3}\right)}}$$

Sinüsün integrali $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$3 {\color{red}{\int{\sin{\left(u \right)} d u}}} = 3 {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$

Hatırlayın ki $$$u=3 x$$$:

$$- 3 \cos{\left({\color{red}{u}} \right)} = - 3 \cos{\left({\color{red}{\left(3 x\right)}} \right)}$$

Dolayısıyla,

$$\int{9 \sin{\left(3 x \right)} d x} = - 3 \cos{\left(3 x \right)}$$

İntegrasyon sabitini ekleyin:

$$\int{9 \sin{\left(3 x \right)} d x} = - 3 \cos{\left(3 x \right)}+C$$

Cevap

$$$\int 9 \sin{\left(3 x \right)}\, dx = - 3 \cos{\left(3 x \right)} + C$$$A


Please try a new game Rotatly