$$$8 \tan^{3}{\left(x \right)} \sec{\left(x \right)}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$8 \tan^{3}{\left(x \right)} \sec{\left(x \right)}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int 8 \tan^{3}{\left(x \right)} \sec{\left(x \right)}\, dx$$$.

Çözüm

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=8$$$ ve $$$f{\left(x \right)} = \tan^{3}{\left(x \right)} \sec{\left(x \right)}$$$ ile uygula:

$${\color{red}{\int{8 \tan^{3}{\left(x \right)} \sec{\left(x \right)} d x}}} = {\color{red}{\left(8 \int{\tan^{3}{\left(x \right)} \sec{\left(x \right)} d x}\right)}}$$

Bir tanjantı dışarı çıkarın ve geri kalan her şeyi sekant cinsinden, $$$\tan^2\left(x \right)=\sec^2\left(x \right)-1$$$ formülünü kullanarak yazın.:

$$8 {\color{red}{\int{\tan^{3}{\left(x \right)} \sec{\left(x \right)} d x}}} = 8 {\color{red}{\int{\left(\sec^{2}{\left(x \right)} - 1\right) \tan{\left(x \right)} \sec{\left(x \right)} d x}}}$$

$$$u=\sec{\left(x \right)}$$$ olsun.

Böylece $$$du=\left(\sec{\left(x \right)}\right)^{\prime }dx = \tan{\left(x \right)} \sec{\left(x \right)} dx$$$ (adımlar » görülebilir) ve $$$\tan{\left(x \right)} \sec{\left(x \right)} dx = du$$$ elde ederiz.

O halde,

$$8 {\color{red}{\int{\left(\sec^{2}{\left(x \right)} - 1\right) \tan{\left(x \right)} \sec{\left(x \right)} d x}}} = 8 {\color{red}{\int{\left(u^{2} - 1\right)d u}}}$$

Her terimin integralini alın:

$$8 {\color{red}{\int{\left(u^{2} - 1\right)d u}}} = 8 {\color{red}{\left(- \int{1 d u} + \int{u^{2} d u}\right)}}$$

$$$c=1$$$ kullanarak $$$\int c\, du = c u$$$ sabit kuralını uygula:

$$8 \int{u^{2} d u} - 8 {\color{red}{\int{1 d u}}} = 8 \int{u^{2} d u} - 8 {\color{red}{u}}$$

Kuvvet kuralını $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=2$$$ ile uygulayın:

$$- 8 u + 8 {\color{red}{\int{u^{2} d u}}}=- 8 u + 8 {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=- 8 u + 8 {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$

Hatırlayın ki $$$u=\sec{\left(x \right)}$$$:

$$- 8 {\color{red}{u}} + \frac{8 {\color{red}{u}}^{3}}{3} = - 8 {\color{red}{\sec{\left(x \right)}}} + \frac{8 {\color{red}{\sec{\left(x \right)}}}^{3}}{3}$$

Dolayısıyla,

$$\int{8 \tan^{3}{\left(x \right)} \sec{\left(x \right)} d x} = \frac{8 \sec^{3}{\left(x \right)}}{3} - 8 \sec{\left(x \right)}$$

Sadeleştirin:

$$\int{8 \tan^{3}{\left(x \right)} \sec{\left(x \right)} d x} = \frac{8 \left(\sec^{2}{\left(x \right)} - 3\right) \sec{\left(x \right)}}{3}$$

İntegrasyon sabitini ekleyin:

$$\int{8 \tan^{3}{\left(x \right)} \sec{\left(x \right)} d x} = \frac{8 \left(\sec^{2}{\left(x \right)} - 3\right) \sec{\left(x \right)}}{3}+C$$

Cevap

$$$\int 8 \tan^{3}{\left(x \right)} \sec{\left(x \right)}\, dx = \frac{8 \left(\sec^{2}{\left(x \right)} - 3\right) \sec{\left(x \right)}}{3} + C$$$A


Please try a new game Rotatly