$$$4 \sin{\left(\frac{\pi t}{2} \right)}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$4 \sin{\left(\frac{\pi t}{2} \right)}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int 4 \sin{\left(\frac{\pi t}{2} \right)}\, dt$$$.

Çözüm

Sabit katsayı kuralı $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$'i $$$c=4$$$ ve $$$f{\left(t \right)} = \sin{\left(\frac{\pi t}{2} \right)}$$$ ile uygula:

$${\color{red}{\int{4 \sin{\left(\frac{\pi t}{2} \right)} d t}}} = {\color{red}{\left(4 \int{\sin{\left(\frac{\pi t}{2} \right)} d t}\right)}}$$

$$$u=\frac{\pi t}{2}$$$ olsun.

Böylece $$$du=\left(\frac{\pi t}{2}\right)^{\prime }dt = \frac{\pi}{2} dt$$$ (adımlar » görülebilir) ve $$$dt = \frac{2 du}{\pi}$$$ elde ederiz.

Dolayısıyla,

$$4 {\color{red}{\int{\sin{\left(\frac{\pi t}{2} \right)} d t}}} = 4 {\color{red}{\int{\frac{2 \sin{\left(u \right)}}{\pi} d u}}}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{2}{\pi}$$$ ve $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ ile uygula:

$$4 {\color{red}{\int{\frac{2 \sin{\left(u \right)}}{\pi} d u}}} = 4 {\color{red}{\left(\frac{2 \int{\sin{\left(u \right)} d u}}{\pi}\right)}}$$

Sinüsün integrali $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$\frac{8 {\color{red}{\int{\sin{\left(u \right)} d u}}}}{\pi} = \frac{8 {\color{red}{\left(- \cos{\left(u \right)}\right)}}}{\pi}$$

Hatırlayın ki $$$u=\frac{\pi t}{2}$$$:

$$- \frac{8 \cos{\left({\color{red}{u}} \right)}}{\pi} = - \frac{8 \cos{\left({\color{red}{\left(\frac{\pi t}{2}\right)}} \right)}}{\pi}$$

Dolayısıyla,

$$\int{4 \sin{\left(\frac{\pi t}{2} \right)} d t} = - \frac{8 \cos{\left(\frac{\pi t}{2} \right)}}{\pi}$$

İntegrasyon sabitini ekleyin:

$$\int{4 \sin{\left(\frac{\pi t}{2} \right)} d t} = - \frac{8 \cos{\left(\frac{\pi t}{2} \right)}}{\pi}+C$$

Cevap

$$$\int 4 \sin{\left(\frac{\pi t}{2} \right)}\, dt = - \frac{8 \cos{\left(\frac{\pi t}{2} \right)}}{\pi} + C$$$A


Please try a new game Rotatly