$$$28 x \sin{\left(3 \right)} \cos{\left(7 x \right)}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$28 x \sin{\left(3 \right)} \cos{\left(7 x \right)}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int 28 x \sin{\left(3 \right)} \cos{\left(7 x \right)}\, dx$$$.

Trigonometrik fonksiyonlar argümanı radyan cinsinden bekler. Argümanı derece cinsinden girmek için onu pi/180 ile çarpın; örneğin 45°’yi 45*pi/180 olarak yazın, ya da uygun fonksiyonun sonuna ‘d’ eklenmiş sürümünü kullanın; örneğin sin(45°)’i sind(45) olarak yazın.

Çözüm

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=28 \sin{\left(3 \right)}$$$ ve $$$f{\left(x \right)} = x \cos{\left(7 x \right)}$$$ ile uygula:

$${\color{red}{\int{28 x \sin{\left(3 \right)} \cos{\left(7 x \right)} d x}}} = {\color{red}{\left(28 \sin{\left(3 \right)} \int{x \cos{\left(7 x \right)} d x}\right)}}$$

$$$\int{x \cos{\left(7 x \right)} d x}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.

$$$\operatorname{u}=x$$$ ve $$$\operatorname{dv}=\cos{\left(7 x \right)} dx$$$ olsun.

O halde $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{\cos{\left(7 x \right)} d x}=\frac{\sin{\left(7 x \right)}}{7}$$$ (adımlar için bkz. »).

Dolayısıyla,

$$28 \sin{\left(3 \right)} {\color{red}{\int{x \cos{\left(7 x \right)} d x}}}=28 \sin{\left(3 \right)} {\color{red}{\left(x \cdot \frac{\sin{\left(7 x \right)}}{7}-\int{\frac{\sin{\left(7 x \right)}}{7} \cdot 1 d x}\right)}}=28 \sin{\left(3 \right)} {\color{red}{\left(\frac{x \sin{\left(7 x \right)}}{7} - \int{\frac{\sin{\left(7 x \right)}}{7} d x}\right)}}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{1}{7}$$$ ve $$$f{\left(x \right)} = \sin{\left(7 x \right)}$$$ ile uygula:

$$28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} - {\color{red}{\int{\frac{\sin{\left(7 x \right)}}{7} d x}}}\right) = 28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} - {\color{red}{\left(\frac{\int{\sin{\left(7 x \right)} d x}}{7}\right)}}\right)$$

$$$u=7 x$$$ olsun.

Böylece $$$du=\left(7 x\right)^{\prime }dx = 7 dx$$$ (adımlar » görülebilir) ve $$$dx = \frac{du}{7}$$$ elde ederiz.

Dolayısıyla,

$$28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} - \frac{{\color{red}{\int{\sin{\left(7 x \right)} d x}}}}{7}\right) = 28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{7} d u}}}}{7}\right)$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{7}$$$ ve $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ ile uygula:

$$28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{7} d u}}}}{7}\right) = 28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} - \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{7}\right)}}}{7}\right)$$

Sinüsün integrali $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{49}\right) = 28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{49}\right)$$

Hatırlayın ki $$$u=7 x$$$:

$$28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} + \frac{\cos{\left({\color{red}{u}} \right)}}{49}\right) = 28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} + \frac{\cos{\left({\color{red}{\left(7 x\right)}} \right)}}{49}\right)$$

Dolayısıyla,

$$\int{28 x \sin{\left(3 \right)} \cos{\left(7 x \right)} d x} = 28 \left(\frac{x \sin{\left(7 x \right)}}{7} + \frac{\cos{\left(7 x \right)}}{49}\right) \sin{\left(3 \right)}$$

Sadeleştirin:

$$\int{28 x \sin{\left(3 \right)} \cos{\left(7 x \right)} d x} = \frac{4 \left(7 x \sin{\left(7 x \right)} + \cos{\left(7 x \right)}\right) \sin{\left(3 \right)}}{7}$$

İntegrasyon sabitini ekleyin:

$$\int{28 x \sin{\left(3 \right)} \cos{\left(7 x \right)} d x} = \frac{4 \left(7 x \sin{\left(7 x \right)} + \cos{\left(7 x \right)}\right) \sin{\left(3 \right)}}{7}+C$$

Cevap

$$$\int 28 x \sin{\left(3 \right)} \cos{\left(7 x \right)}\, dx = \frac{4 \left(7 x \sin{\left(7 x \right)} + \cos{\left(7 x \right)}\right) \sin{\left(3 \right)}}{7} + C$$$A


Please try a new game Rotatly