$$$3^{\sqrt{2} \sqrt{x}}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$3^{\sqrt{2} \sqrt{x}}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int 3^{\sqrt{2} \sqrt{x}}\, dx$$$.

Çözüm

Tabanı değiştir:

$${\color{red}{\int{3^{\sqrt{2} \sqrt{x}} d x}}} = {\color{red}{\int{e^{\sqrt{2} \sqrt{x} \ln{\left(3 \right)}} d x}}}$$

$$$u=\sqrt{2} \sqrt{x} \ln{\left(3 \right)}$$$ olsun.

Böylece $$$du=\left(\sqrt{2} \sqrt{x} \ln{\left(3 \right)}\right)^{\prime }dx = \frac{\sqrt{2} \ln{\left(3 \right)}}{2 \sqrt{x}} dx$$$ (adımlar » görülebilir) ve $$$\frac{dx}{\sqrt{x}} = \frac{\sqrt{2} du}{\ln{\left(3 \right)}}$$$ elde ederiz.

Dolayısıyla,

$${\color{red}{\int{e^{\sqrt{2} \sqrt{x} \ln{\left(3 \right)}} d x}}} = {\color{red}{\int{\frac{u e^{u}}{\ln{\left(3 \right)}^{2}} d u}}}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{\ln{\left(3 \right)}^{2}}$$$ ve $$$f{\left(u \right)} = u e^{u}$$$ ile uygula:

$${\color{red}{\int{\frac{u e^{u}}{\ln{\left(3 \right)}^{2}} d u}}} = {\color{red}{\frac{\int{u e^{u} d u}}{\ln{\left(3 \right)}^{2}}}}$$

$$$\int{u e^{u} d u}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$ kullanın.

$$$\operatorname{g}=u$$$ ve $$$\operatorname{dv}=e^{u} du$$$ olsun.

O halde $$$\operatorname{dg}=\left(u\right)^{\prime }du=1 du$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$ (adımlar için bkz. »).

İntegral şu hale gelir

$$\frac{{\color{red}{\int{u e^{u} d u}}}}{\ln{\left(3 \right)}^{2}}=\frac{{\color{red}{\left(u \cdot e^{u}-\int{e^{u} \cdot 1 d u}\right)}}}{\ln{\left(3 \right)}^{2}}=\frac{{\color{red}{\left(u e^{u} - \int{e^{u} d u}\right)}}}{\ln{\left(3 \right)}^{2}}$$

Üstel fonksiyonun integrali $$$\int{e^{u} d u} = e^{u}$$$:

$$\frac{u e^{u} - {\color{red}{\int{e^{u} d u}}}}{\ln{\left(3 \right)}^{2}} = \frac{u e^{u} - {\color{red}{e^{u}}}}{\ln{\left(3 \right)}^{2}}$$

Hatırlayın ki $$$u=\sqrt{2} \sqrt{x} \ln{\left(3 \right)}$$$:

$$\frac{- e^{{\color{red}{u}}} + {\color{red}{u}} e^{{\color{red}{u}}}}{\ln{\left(3 \right)}^{2}} = \frac{- e^{{\color{red}{\sqrt{2} \sqrt{x} \ln{\left(3 \right)}}}} + {\color{red}{\sqrt{2} \sqrt{x} \ln{\left(3 \right)}}} e^{{\color{red}{\sqrt{2} \sqrt{x} \ln{\left(3 \right)}}}}}{\ln{\left(3 \right)}^{2}}$$

Dolayısıyla,

$$\int{3^{\sqrt{2} \sqrt{x}} d x} = \frac{\sqrt{2} \sqrt{x} e^{\sqrt{2} \sqrt{x} \ln{\left(3 \right)}} \ln{\left(3 \right)} - e^{\sqrt{2} \sqrt{x} \ln{\left(3 \right)}}}{\ln{\left(3 \right)}^{2}}$$

Sadeleştirin:

$$\int{3^{\sqrt{2} \sqrt{x}} d x} = \frac{\left(\sqrt{2} \sqrt{x} \ln{\left(3 \right)} - 1\right) e^{\sqrt{2} \sqrt{x} \ln{\left(3 \right)}}}{\ln{\left(3 \right)}^{2}}$$

İntegrasyon sabitini ekleyin:

$$\int{3^{\sqrt{2} \sqrt{x}} d x} = \frac{\left(\sqrt{2} \sqrt{x} \ln{\left(3 \right)} - 1\right) e^{\sqrt{2} \sqrt{x} \ln{\left(3 \right)}}}{\ln{\left(3 \right)}^{2}}+C$$

Cevap

$$$\int 3^{\sqrt{2} \sqrt{x}}\, dx = \frac{\left(\sqrt{2} \sqrt{x} \ln\left(3\right) - 1\right) e^{\sqrt{2} \sqrt{x} \ln\left(3\right)}}{\ln^{2}\left(3\right)} + C$$$A


Please try a new game Rotatly