$$$5 x^{6} - x^{3} + 2 x^{2} + 21$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \left(5 x^{6} - x^{3} + 2 x^{2} + 21\right)\, dx$$$.
Çözüm
Her terimin integralini alın:
$${\color{red}{\int{\left(5 x^{6} - x^{3} + 2 x^{2} + 21\right)d x}}} = {\color{red}{\left(\int{21 d x} + \int{2 x^{2} d x} - \int{x^{3} d x} + \int{5 x^{6} d x}\right)}}$$
$$$c=21$$$ kullanarak $$$\int c\, dx = c x$$$ sabit kuralını uygula:
$$\int{2 x^{2} d x} - \int{x^{3} d x} + \int{5 x^{6} d x} + {\color{red}{\int{21 d x}}} = \int{2 x^{2} d x} - \int{x^{3} d x} + \int{5 x^{6} d x} + {\color{red}{\left(21 x\right)}}$$
Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=3$$$ ile uygulayın:
$$21 x + \int{2 x^{2} d x} + \int{5 x^{6} d x} - {\color{red}{\int{x^{3} d x}}}=21 x + \int{2 x^{2} d x} + \int{5 x^{6} d x} - {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=21 x + \int{2 x^{2} d x} + \int{5 x^{6} d x} - {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=2$$$ ve $$$f{\left(x \right)} = x^{2}$$$ ile uygula:
$$- \frac{x^{4}}{4} + 21 x + \int{5 x^{6} d x} + {\color{red}{\int{2 x^{2} d x}}} = - \frac{x^{4}}{4} + 21 x + \int{5 x^{6} d x} + {\color{red}{\left(2 \int{x^{2} d x}\right)}}$$
Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=2$$$ ile uygulayın:
$$- \frac{x^{4}}{4} + 21 x + \int{5 x^{6} d x} + 2 {\color{red}{\int{x^{2} d x}}}=- \frac{x^{4}}{4} + 21 x + \int{5 x^{6} d x} + 2 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- \frac{x^{4}}{4} + 21 x + \int{5 x^{6} d x} + 2 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=5$$$ ve $$$f{\left(x \right)} = x^{6}$$$ ile uygula:
$$- \frac{x^{4}}{4} + \frac{2 x^{3}}{3} + 21 x + {\color{red}{\int{5 x^{6} d x}}} = - \frac{x^{4}}{4} + \frac{2 x^{3}}{3} + 21 x + {\color{red}{\left(5 \int{x^{6} d x}\right)}}$$
Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=6$$$ ile uygulayın:
$$- \frac{x^{4}}{4} + \frac{2 x^{3}}{3} + 21 x + 5 {\color{red}{\int{x^{6} d x}}}=- \frac{x^{4}}{4} + \frac{2 x^{3}}{3} + 21 x + 5 {\color{red}{\frac{x^{1 + 6}}{1 + 6}}}=- \frac{x^{4}}{4} + \frac{2 x^{3}}{3} + 21 x + 5 {\color{red}{\left(\frac{x^{7}}{7}\right)}}$$
Dolayısıyla,
$$\int{\left(5 x^{6} - x^{3} + 2 x^{2} + 21\right)d x} = \frac{5 x^{7}}{7} - \frac{x^{4}}{4} + \frac{2 x^{3}}{3} + 21 x$$
Sadeleştirin:
$$\int{\left(5 x^{6} - x^{3} + 2 x^{2} + 21\right)d x} = \frac{x \left(60 x^{6} - 21 x^{3} + 56 x^{2} + 1764\right)}{84}$$
İntegrasyon sabitini ekleyin:
$$\int{\left(5 x^{6} - x^{3} + 2 x^{2} + 21\right)d x} = \frac{x \left(60 x^{6} - 21 x^{3} + 56 x^{2} + 1764\right)}{84}+C$$
Cevap
$$$\int \left(5 x^{6} - x^{3} + 2 x^{2} + 21\right)\, dx = \frac{x \left(60 x^{6} - 21 x^{3} + 56 x^{2} + 1764\right)}{84} + C$$$A