$$$6 e^{- \frac{x}{2}} \sin{\left(2 x \right)}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$6 e^{- \frac{x}{2}} \sin{\left(2 x \right)}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int 6 e^{- \frac{x}{2}} \sin{\left(2 x \right)}\, dx$$$.

Çözüm

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=6$$$ ve $$$f{\left(x \right)} = e^{- \frac{x}{2}} \sin{\left(2 x \right)}$$$ ile uygula:

$${\color{red}{\int{6 e^{- \frac{x}{2}} \sin{\left(2 x \right)} d x}}} = {\color{red}{\left(6 \int{e^{- \frac{x}{2}} \sin{\left(2 x \right)} d x}\right)}}$$

$$$\int{e^{- \frac{x}{2}} \sin{\left(2 x \right)} d x}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.

$$$\operatorname{u}=\sin{\left(2 x \right)}$$$ ve $$$\operatorname{dv}=e^{- \frac{x}{2}} dx$$$ olsun.

O halde $$$\operatorname{du}=\left(\sin{\left(2 x \right)}\right)^{\prime }dx=2 \cos{\left(2 x \right)} dx$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{e^{- \frac{x}{2}} d x}=- 2 e^{- \frac{x}{2}}$$$ (adımlar için bkz. »).

O halde,

$$6 {\color{red}{\int{e^{- \frac{x}{2}} \sin{\left(2 x \right)} d x}}}=6 {\color{red}{\left(\sin{\left(2 x \right)} \cdot \left(- 2 e^{- \frac{x}{2}}\right)-\int{\left(- 2 e^{- \frac{x}{2}}\right) \cdot 2 \cos{\left(2 x \right)} d x}\right)}}=6 {\color{red}{\left(- \int{\left(- 4 e^{- \frac{x}{2}} \cos{\left(2 x \right)}\right)d x} - 2 e^{- \frac{x}{2}} \sin{\left(2 x \right)}\right)}}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=-4$$$ ve $$$f{\left(x \right)} = e^{- \frac{x}{2}} \cos{\left(2 x \right)}$$$ ile uygula:

$$- 6 {\color{red}{\int{\left(- 4 e^{- \frac{x}{2}} \cos{\left(2 x \right)}\right)d x}}} - 12 e^{- \frac{x}{2}} \sin{\left(2 x \right)} = - 6 {\color{red}{\left(- 4 \int{e^{- \frac{x}{2}} \cos{\left(2 x \right)} d x}\right)}} - 12 e^{- \frac{x}{2}} \sin{\left(2 x \right)}$$

$$$\int{e^{- \frac{x}{2}} \cos{\left(2 x \right)} d x}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.

$$$\operatorname{u}=\cos{\left(2 x \right)}$$$ ve $$$\operatorname{dv}=e^{- \frac{x}{2}} dx$$$ olsun.

O halde $$$\operatorname{du}=\left(\cos{\left(2 x \right)}\right)^{\prime }dx=- 2 \sin{\left(2 x \right)} dx$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{e^{- \frac{x}{2}} d x}=- 2 e^{- \frac{x}{2}}$$$ (adımlar için bkz. »).

İntegral şu hale gelir

$$24 {\color{red}{\int{e^{- \frac{x}{2}} \cos{\left(2 x \right)} d x}}} - 12 e^{- \frac{x}{2}} \sin{\left(2 x \right)}=24 {\color{red}{\left(\cos{\left(2 x \right)} \cdot \left(- 2 e^{- \frac{x}{2}}\right)-\int{\left(- 2 e^{- \frac{x}{2}}\right) \cdot \left(- 2 \sin{\left(2 x \right)}\right) d x}\right)}} - 12 e^{- \frac{x}{2}} \sin{\left(2 x \right)}=24 {\color{red}{\left(- \int{4 e^{- \frac{x}{2}} \sin{\left(2 x \right)} d x} - 2 e^{- \frac{x}{2}} \cos{\left(2 x \right)}\right)}} - 12 e^{- \frac{x}{2}} \sin{\left(2 x \right)}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=4$$$ ve $$$f{\left(x \right)} = e^{- \frac{x}{2}} \sin{\left(2 x \right)}$$$ ile uygula:

$$- 24 {\color{red}{\int{4 e^{- \frac{x}{2}} \sin{\left(2 x \right)} d x}}} - 12 e^{- \frac{x}{2}} \sin{\left(2 x \right)} - 48 e^{- \frac{x}{2}} \cos{\left(2 x \right)} = - 24 {\color{red}{\left(4 \int{e^{- \frac{x}{2}} \sin{\left(2 x \right)} d x}\right)}} - 12 e^{- \frac{x}{2}} \sin{\left(2 x \right)} - 48 e^{- \frac{x}{2}} \cos{\left(2 x \right)}$$

Daha önce gördüğümüz bir integrale ulaştık.

Böylece, integrale ilişkin aşağıdaki basit denklemi elde ettik:

$$6 \int{e^{- \frac{x}{2}} \sin{\left(2 x \right)} d x} = - 96 \int{e^{- \frac{x}{2}} \sin{\left(2 x \right)} d x} - 12 e^{- \frac{x}{2}} \sin{\left(2 x \right)} - 48 e^{- \frac{x}{2}} \cos{\left(2 x \right)}$$

Çözdüğümüzde, şunu elde ederiz

$$\int{e^{- \frac{x}{2}} \sin{\left(2 x \right)} d x} = \frac{2 \left(- \sin{\left(2 x \right)} - 4 \cos{\left(2 x \right)}\right) e^{- \frac{x}{2}}}{17}$$

Dolayısıyla,

$$6 {\color{red}{\int{e^{- \frac{x}{2}} \sin{\left(2 x \right)} d x}}} = 6 {\color{red}{\left(\frac{2 \left(- \sin{\left(2 x \right)} - 4 \cos{\left(2 x \right)}\right) e^{- \frac{x}{2}}}{17}\right)}}$$

Dolayısıyla,

$$\int{6 e^{- \frac{x}{2}} \sin{\left(2 x \right)} d x} = \frac{12 \left(- \sin{\left(2 x \right)} - 4 \cos{\left(2 x \right)}\right) e^{- \frac{x}{2}}}{17}$$

İntegrasyon sabitini ekleyin:

$$\int{6 e^{- \frac{x}{2}} \sin{\left(2 x \right)} d x} = \frac{12 \left(- \sin{\left(2 x \right)} - 4 \cos{\left(2 x \right)}\right) e^{- \frac{x}{2}}}{17}+C$$

Cevap

$$$\int 6 e^{- \frac{x}{2}} \sin{\left(2 x \right)}\, dx = \frac{12 \left(- \sin{\left(2 x \right)} - 4 \cos{\left(2 x \right)}\right) e^{- \frac{x}{2}}}{17} + C$$$A


Please try a new game Rotatly