$$$n^{\frac{3}{2}}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$n^{\frac{3}{2}}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int n^{\frac{3}{2}}\, dn$$$.

Çözüm

Kuvvet kuralını $$$\int n^{n}\, dn = \frac{n^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=\frac{3}{2}$$$ ile uygulayın:

$${\color{red}{\int{n^{\frac{3}{2}} d n}}}={\color{red}{\frac{n^{1 + \frac{3}{2}}}{1 + \frac{3}{2}}}}={\color{red}{\left(\frac{2 n^{\frac{5}{2}}}{5}\right)}}$$

Dolayısıyla,

$$\int{n^{\frac{3}{2}} d n} = \frac{2 n^{\frac{5}{2}}}{5}$$

İntegrasyon sabitini ekleyin:

$$\int{n^{\frac{3}{2}} d n} = \frac{2 n^{\frac{5}{2}}}{5}+C$$

Cevap

$$$\int n^{\frac{3}{2}}\, dn = \frac{2 n^{\frac{5}{2}}}{5} + C$$$A


Please try a new game Rotatly