$$$10^{- x}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int 10^{- x}\, dx$$$.
Çözüm
$$$u=- x$$$ olsun.
Böylece $$$du=\left(- x\right)^{\prime }dx = - dx$$$ (adımlar » görülebilir) ve $$$dx = - du$$$ elde ederiz.
Dolayısıyla,
$${\color{red}{\int{10^{- x} d x}}} = {\color{red}{\int{\left(- 10^{u}\right)d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=-1$$$ ve $$$f{\left(u \right)} = 10^{u}$$$ ile uygula:
$${\color{red}{\int{\left(- 10^{u}\right)d u}}} = {\color{red}{\left(- \int{10^{u} d u}\right)}}$$
Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=10$$$:
$$- {\color{red}{\int{10^{u} d u}}} = - {\color{red}{\frac{10^{u}}{\ln{\left(10 \right)}}}}$$
Hatırlayın ki $$$u=- x$$$:
$$- \frac{10^{{\color{red}{u}}}}{\ln{\left(10 \right)}} = - \frac{10^{{\color{red}{\left(- x\right)}}}}{\ln{\left(10 \right)}}$$
Dolayısıyla,
$$\int{10^{- x} d x} = - \frac{10^{- x}}{\ln{\left(10 \right)}}$$
İntegrasyon sabitini ekleyin:
$$\int{10^{- x} d x} = - \frac{10^{- x}}{\ln{\left(10 \right)}}+C$$
Cevap
$$$\int 10^{- x}\, dx = - \frac{10^{- x}}{\ln\left(10\right)} + C$$$A