$$$\frac{\sqrt{x - 1}}{x}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\frac{\sqrt{x - 1}}{x}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{\sqrt{x - 1}}{x}\, dx$$$.

Çözüm

$$$u=\sqrt{x - 1}$$$ olsun.

Böylece $$$du=\left(\sqrt{x - 1}\right)^{\prime }dx = \frac{1}{2 \sqrt{x - 1}} dx$$$ (adımlar » görülebilir) ve $$$\frac{dx}{\sqrt{x - 1}} = 2 du$$$ elde ederiz.

İntegral şu hale gelir

$${\color{red}{\int{\frac{\sqrt{x - 1}}{x} d x}}} = {\color{red}{\int{\frac{2 u^{2}}{u^{2} + 1} d u}}}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=2$$$ ve $$$f{\left(u \right)} = \frac{u^{2}}{u^{2} + 1}$$$ ile uygula:

$${\color{red}{\int{\frac{2 u^{2}}{u^{2} + 1} d u}}} = {\color{red}{\left(2 \int{\frac{u^{2}}{u^{2} + 1} d u}\right)}}$$

Kesri yeniden yazın ve parçalara ayırın:

$$2 {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = 2 {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$

Her terimin integralini alın:

$$2 {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = 2 {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$

$$$c=1$$$ kullanarak $$$\int c\, du = c u$$$ sabit kuralını uygula:

$$- 2 \int{\frac{1}{u^{2} + 1} d u} + 2 {\color{red}{\int{1 d u}}} = - 2 \int{\frac{1}{u^{2} + 1} d u} + 2 {\color{red}{u}}$$

$$$\frac{1}{u^{2} + 1}$$$'nin integrali $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$$2 u - 2 {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = 2 u - 2 {\color{red}{\operatorname{atan}{\left(u \right)}}}$$

Hatırlayın ki $$$u=\sqrt{x - 1}$$$:

$$- 2 \operatorname{atan}{\left({\color{red}{u}} \right)} + 2 {\color{red}{u}} = - 2 \operatorname{atan}{\left({\color{red}{\sqrt{x - 1}}} \right)} + 2 {\color{red}{\sqrt{x - 1}}}$$

Dolayısıyla,

$$\int{\frac{\sqrt{x - 1}}{x} d x} = 2 \sqrt{x - 1} - 2 \operatorname{atan}{\left(\sqrt{x - 1} \right)}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{\sqrt{x - 1}}{x} d x} = 2 \sqrt{x - 1} - 2 \operatorname{atan}{\left(\sqrt{x - 1} \right)}+C$$

Cevap

$$$\int \frac{\sqrt{x - 1}}{x}\, dx = \left(2 \sqrt{x - 1} - 2 \operatorname{atan}{\left(\sqrt{x - 1} \right)}\right) + C$$$A


Please try a new game Rotatly