$$$1 + \frac{1}{x^{5}}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$1 + \frac{1}{x^{5}}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \left(1 + \frac{1}{x^{5}}\right)\, dx$$$.

Çözüm

Her terimin integralini alın:

$${\color{red}{\int{\left(1 + \frac{1}{x^{5}}\right)d x}}} = {\color{red}{\left(\int{1 d x} + \int{\frac{1}{x^{5}} d x}\right)}}$$

$$$c=1$$$ kullanarak $$$\int c\, dx = c x$$$ sabit kuralını uygula:

$$\int{\frac{1}{x^{5}} d x} + {\color{red}{\int{1 d x}}} = \int{\frac{1}{x^{5}} d x} + {\color{red}{x}}$$

Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=-5$$$ ile uygulayın:

$$x + {\color{red}{\int{\frac{1}{x^{5}} d x}}}=x + {\color{red}{\int{x^{-5} d x}}}=x + {\color{red}{\frac{x^{-5 + 1}}{-5 + 1}}}=x + {\color{red}{\left(- \frac{x^{-4}}{4}\right)}}=x + {\color{red}{\left(- \frac{1}{4 x^{4}}\right)}}$$

Dolayısıyla,

$$\int{\left(1 + \frac{1}{x^{5}}\right)d x} = x - \frac{1}{4 x^{4}}$$

İntegrasyon sabitini ekleyin:

$$\int{\left(1 + \frac{1}{x^{5}}\right)d x} = x - \frac{1}{4 x^{4}}+C$$

Cevap

$$$\int \left(1 + \frac{1}{x^{5}}\right)\, dx = \left(x - \frac{1}{4 x^{4}}\right) + C$$$A


Please try a new game Rotatly