$$$x$$$ değişkenine göre $$$a^{2} + \frac{1}{x^{2}}$$$ fonksiyonunun integrali

Hesaplayıcı, $$$x$$$ değişkenine göre $$$a^{2} + \frac{1}{x^{2}}$$$ fonksiyonunun integralini/antitürevini bulur ve adım adım gösterir.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \left(a^{2} + \frac{1}{x^{2}}\right)\, dx$$$.

Çözüm

Her terimin integralini alın:

$${\color{red}{\int{\left(a^{2} + \frac{1}{x^{2}}\right)d x}}} = {\color{red}{\left(\int{a^{2} d x} + \int{\frac{1}{x^{2}} d x}\right)}}$$

$$$c=a^{2}$$$ kullanarak $$$\int c\, dx = c x$$$ sabit kuralını uygula:

$$\int{\frac{1}{x^{2}} d x} + {\color{red}{\int{a^{2} d x}}} = \int{\frac{1}{x^{2}} d x} + {\color{red}{a^{2} x}}$$

Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=-2$$$ ile uygulayın:

$$a^{2} x + {\color{red}{\int{\frac{1}{x^{2}} d x}}}=a^{2} x + {\color{red}{\int{x^{-2} d x}}}=a^{2} x + {\color{red}{\frac{x^{-2 + 1}}{-2 + 1}}}=a^{2} x + {\color{red}{\left(- x^{-1}\right)}}=a^{2} x + {\color{red}{\left(- \frac{1}{x}\right)}}$$

Dolayısıyla,

$$\int{\left(a^{2} + \frac{1}{x^{2}}\right)d x} = a^{2} x - \frac{1}{x}$$

İntegrasyon sabitini ekleyin:

$$\int{\left(a^{2} + \frac{1}{x^{2}}\right)d x} = a^{2} x - \frac{1}{x}+C$$

Cevap

$$$\int \left(a^{2} + \frac{1}{x^{2}}\right)\, dx = \left(a^{2} x - \frac{1}{x}\right) + C$$$A


Please try a new game Rotatly