$$$\frac{\sqrt{\ln\left(x\right)}}{x}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\frac{\sqrt{\ln\left(x\right)}}{x}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{\sqrt{\ln\left(x\right)}}{x}\, dx$$$.

Çözüm

$$$u=\ln{\left(x \right)}$$$ olsun.

Böylece $$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (adımlar » görülebilir) ve $$$\frac{dx}{x} = du$$$ elde ederiz.

Dolayısıyla,

$${\color{red}{\int{\frac{\sqrt{\ln{\left(x \right)}}}{x} d x}}} = {\color{red}{\int{\sqrt{u} d u}}}$$

Kuvvet kuralını $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=\frac{1}{2}$$$ ile uygulayın:

$${\color{red}{\int{\sqrt{u} d u}}}={\color{red}{\int{u^{\frac{1}{2}} d u}}}={\color{red}{\frac{u^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}={\color{red}{\left(\frac{2 u^{\frac{3}{2}}}{3}\right)}}$$

Hatırlayın ki $$$u=\ln{\left(x \right)}$$$:

$$\frac{2 {\color{red}{u}}^{\frac{3}{2}}}{3} = \frac{2 {\color{red}{\ln{\left(x \right)}}}^{\frac{3}{2}}}{3}$$

Dolayısıyla,

$$\int{\frac{\sqrt{\ln{\left(x \right)}}}{x} d x} = \frac{2 \ln{\left(x \right)}^{\frac{3}{2}}}{3}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{\sqrt{\ln{\left(x \right)}}}{x} d x} = \frac{2 \ln{\left(x \right)}^{\frac{3}{2}}}{3}+C$$

Cevap

$$$\int \frac{\sqrt{\ln\left(x\right)}}{x}\, dx = \frac{2 \ln^{\frac{3}{2}}\left(x\right)}{3} + C$$$A


Please try a new game Rotatly