$$$\frac{1}{3} - x$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\frac{1}{3} - x$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \left(\frac{1}{3} - x\right)\, dx$$$.

Çözüm

Her terimin integralini alın:

$${\color{red}{\int{\left(\frac{1}{3} - x\right)d x}}} = {\color{red}{\left(\int{\frac{1}{3} d x} - \int{x d x}\right)}}$$

$$$c=\frac{1}{3}$$$ kullanarak $$$\int c\, dx = c x$$$ sabit kuralını uygula:

$$- \int{x d x} + {\color{red}{\int{\frac{1}{3} d x}}} = - \int{x d x} + {\color{red}{\left(\frac{x}{3}\right)}}$$

Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=1$$$ ile uygulayın:

$$\frac{x}{3} - {\color{red}{\int{x d x}}}=\frac{x}{3} - {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\frac{x}{3} - {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Dolayısıyla,

$$\int{\left(\frac{1}{3} - x\right)d x} = - \frac{x^{2}}{2} + \frac{x}{3}$$

Sadeleştirin:

$$\int{\left(\frac{1}{3} - x\right)d x} = \frac{x \left(2 - 3 x\right)}{6}$$

İntegrasyon sabitini ekleyin:

$$\int{\left(\frac{1}{3} - x\right)d x} = \frac{x \left(2 - 3 x\right)}{6}+C$$

Cevap

$$$\int \left(\frac{1}{3} - x\right)\, dx = \frac{x \left(2 - 3 x\right)}{6} + C$$$A


Please try a new game Rotatly