$$$x$$$ değişkenine göre $$$\left(- a + x\right)^{- p}$$$ fonksiyonunun integrali

Hesaplayıcı, $$$x$$$ değişkenine göre $$$\left(- a + x\right)^{- p}$$$ fonksiyonunun integralini/antitürevini bulur ve adım adım gösterir.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \left(- a + x\right)^{- p}\, dx$$$.

Çözüm

Girdi yeniden yazıldı: $$$\int{\left(- a + x\right)^{- p} d x}=\int{\left(\frac{1}{- a + x}\right)^{p} d x}$$$.

$$$u=- a + x$$$ olsun.

Böylece $$$du=\left(- a + x\right)^{\prime }dx = 1 dx$$$ (adımlar » görülebilir) ve $$$dx = du$$$ elde ederiz.

Dolayısıyla,

$${\color{red}{\int{\left(\frac{1}{- a + x}\right)^{p} d x}}} = {\color{red}{\int{\left(\frac{1}{u}\right)^{p} d u}}}$$

$$$v=\frac{1}{u}$$$ olsun.

Böylece $$$dv=\left(\frac{1}{u}\right)^{\prime }du = - \frac{1}{u^{2}} du$$$ (adımlar » görülebilir) ve $$$\frac{du}{u^{2}} = - dv$$$ elde ederiz.

İntegral şu şekilde yeniden yazılabilir:

$${\color{red}{\int{\left(\frac{1}{u}\right)^{p} d u}}} = {\color{red}{\int{\left(- v^{p - 2}\right)d v}}}$$

Sabit katsayı kuralı $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$'i $$$c=-1$$$ ve $$$f{\left(v \right)} = v^{p - 2}$$$ ile uygula:

$${\color{red}{\int{\left(- v^{p - 2}\right)d v}}} = {\color{red}{\left(- \int{v^{p - 2} d v}\right)}}$$

Kuvvet kuralını $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=p - 2$$$ ile uygulayın:

$$- {\color{red}{\int{v^{p - 2} d v}}}=- {\color{red}{\frac{v^{\left(p - 2\right) + 1}}{\left(p - 2\right) + 1}}}=- {\color{red}{\frac{v^{p - 1}}{p - 1}}}$$

Hatırlayın ki $$$v=\frac{1}{u}$$$:

$$- \frac{{\color{red}{v}}^{p - 1}}{p - 1} = - \frac{{\color{red}{\frac{1}{u}}}^{p - 1}}{p - 1}$$

Hatırlayın ki $$$u=- a + x$$$:

$$- \frac{\left({\color{red}{u}}^{-1}\right)^{p - 1}}{p - 1} = - \frac{\left({\color{red}{\left(- a + x\right)}}^{-1}\right)^{p - 1}}{p - 1}$$

Dolayısıyla,

$$\int{\left(\frac{1}{- a + x}\right)^{p} d x} = - \frac{\left(\frac{1}{- a + x}\right)^{p - 1}}{p - 1}$$

İntegrasyon sabitini ekleyin:

$$\int{\left(\frac{1}{- a + x}\right)^{p} d x} = - \frac{\left(\frac{1}{- a + x}\right)^{p - 1}}{p - 1}+C$$

Cevap

$$$\int \left(- a + x\right)^{- p}\, dx = - \frac{\left(\frac{1}{- a + x}\right)^{p - 1}}{p - 1} + C$$$A


Please try a new game Rotatly