$$$\frac{1}{x^{3} \sqrt{x^{2} - 1}}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\frac{1}{x^{3} \sqrt{x^{2} - 1}}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{1}{x^{3} \sqrt{x^{2} - 1}}\, dx$$$.

Çözüm

$$$x=\cosh{\left(u \right)}$$$ olsun.

O halde $$$dx=\left(\cosh{\left(u \right)}\right)^{\prime }du = \sinh{\left(u \right)} du$$$ (adımlar » görülebilir).

Ayrıca, buradan $$$u=\operatorname{acosh}{\left(x \right)}$$$ elde edilir.

Dolayısıyla,

$$$\frac{1}{x^{3} \sqrt{x^{2} - 1}} = \frac{1}{\sqrt{\cosh^{2}{\left( u \right)} - 1} \cosh^{3}{\left( u \right)}}$$$

Özdeşliği kullanın: $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$

$$$\frac{1}{\sqrt{\cosh^{2}{\left( u \right)} - 1} \cosh^{3}{\left( u \right)}}=\frac{1}{\sqrt{\sinh^{2}{\left( u \right)}} \cosh^{3}{\left( u \right)}}$$$

$$$\sinh{\left( u \right)} \ge 0$$$ olduğunu varsayarsak, aşağıdakileri elde ederiz:

$$$\frac{1}{\sqrt{\sinh^{2}{\left( u \right)}} \cosh^{3}{\left( u \right)}} = \frac{1}{\sinh{\left( u \right)} \cosh^{3}{\left( u \right)}}$$$

Dolayısıyla,

$${\color{red}{\int{\frac{1}{x^{3} \sqrt{x^{2} - 1}} d x}}} = {\color{red}{\int{\frac{1}{\cosh^{3}{\left(u \right)}} d u}}}$$

İntegrand fonksiyonunu hiperbolik sekant cinsinden yeniden yazın.:

$${\color{red}{\int{\frac{1}{\cosh^{3}{\left(u \right)}} d u}}} = {\color{red}{\int{\operatorname{sech}^{3}{\left(u \right)} d u}}}$$

$$$\int{\operatorname{sech}^{3}{\left(u \right)} d u}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{m} \operatorname{dv} = \operatorname{m}\operatorname{v} - \int \operatorname{v} \operatorname{dm}$$$ kullanın.

$$$\operatorname{m}=\operatorname{sech}{\left(u \right)}$$$ ve $$$\operatorname{dv}=\operatorname{sech}^{2}{\left(u \right)} du$$$ olsun.

O halde $$$\operatorname{dm}=\left(\operatorname{sech}{\left(u \right)}\right)^{\prime }du=- \tanh{\left(u \right)} \operatorname{sech}{\left(u \right)} du$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{\operatorname{sech}^{2}{\left(u \right)} d u}=\tanh{\left(u \right)}$$$ (adımlar için bkz. »).

O halde,

$$\int{\operatorname{sech}^{3}{\left(u \right)} d u}=\operatorname{sech}{\left(u \right)} \cdot \tanh{\left(u \right)}-\int{\tanh{\left(u \right)} \cdot \left(- \tanh{\left(u \right)} \operatorname{sech}{\left(u \right)}\right) d u}=\tanh{\left(u \right)} \operatorname{sech}{\left(u \right)} - \int{\left(- \tanh^{2}{\left(u \right)} \operatorname{sech}{\left(u \right)}\right)d u}$$

Formülü $$$\tanh^{2}{\left(u \right)} = 1 - \operatorname{sech}^{2}{\left(u \right)}$$$ uygulayın:

$$\tanh{\left(u \right)} \operatorname{sech}{\left(u \right)} - \int{\left(- \tanh^{2}{\left(u \right)} \operatorname{sech}{\left(u \right)}\right)d u}=\tanh{\left(u \right)} \operatorname{sech}{\left(u \right)} - \int{\left(\operatorname{sech}^{2}{\left(u \right)} - 1\right) \operatorname{sech}{\left(u \right)} d u}$$

Genişletin:

$$\tanh{\left(u \right)} \operatorname{sech}{\left(u \right)} - \int{\left(\operatorname{sech}^{2}{\left(u \right)} - 1\right) \operatorname{sech}{\left(u \right)} d u}=\tanh{\left(u \right)} \operatorname{sech}{\left(u \right)} - \int{\left(\operatorname{sech}^{3}{\left(u \right)} - \operatorname{sech}{\left(u \right)}\right)d u}$$

Bir toplamın/farkın integrali, integrallerin toplamı/farkıdır:

$$\tanh{\left(u \right)} \operatorname{sech}{\left(u \right)} - \int{\left(\operatorname{sech}^{3}{\left(u \right)} - \operatorname{sech}{\left(u \right)}\right)d u}=\tanh{\left(u \right)} \operatorname{sech}{\left(u \right)} + \int{\operatorname{sech}{\left(u \right)} d u} - \int{\operatorname{sech}^{3}{\left(u \right)} d u}$$

Dolayısıyla, integrale göre aşağıdaki basit doğrusal denklemi elde ederiz:

$${\color{red}{\int{\operatorname{sech}^{3}{\left(u \right)} d u}}}=\tanh{\left(u \right)} \operatorname{sech}{\left(u \right)} + \int{\operatorname{sech}{\left(u \right)} d u} - {\color{red}{\int{\operatorname{sech}^{3}{\left(u \right)} d u}}}$$

Bunu çözdüğümüzde, şunu elde ederiz:

$$\int{\operatorname{sech}^{3}{\left(u \right)} d u}=\frac{\tanh{\left(u \right)} \operatorname{sech}{\left(u \right)}}{2} + \frac{\int{\operatorname{sech}{\left(u \right)} d u}}{2}$$

Hiperbolik sekantı $$$\operatorname{sech}\left( u \right)=\frac{2}{e^{\left( u \right)}+e^{-\left( u \right)}}$$$ üssünü kullanarak yeniden yazın:

$$\frac{\tanh{\left(u \right)} \operatorname{sech}{\left(u \right)}}{2} + \frac{{\color{red}{\int{\operatorname{sech}{\left(u \right)} d u}}}}{2} = \frac{\tanh{\left(u \right)} \operatorname{sech}{\left(u \right)}}{2} + \frac{{\color{red}{\int{\frac{2}{e^{u} + e^{- u}} d u}}}}{2}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=2$$$ ve $$$f{\left(u \right)} = \frac{1}{e^{u} + e^{- u}}$$$ ile uygula:

$$\frac{\tanh{\left(u \right)} \operatorname{sech}{\left(u \right)}}{2} + \frac{{\color{red}{\int{\frac{2}{e^{u} + e^{- u}} d u}}}}{2} = \frac{\tanh{\left(u \right)} \operatorname{sech}{\left(u \right)}}{2} + \frac{{\color{red}{\left(2 \int{\frac{1}{e^{u} + e^{- u}} d u}\right)}}}{2}$$

Simplify:

$$\frac{\tanh{\left(u \right)} \operatorname{sech}{\left(u \right)}}{2} + {\color{red}{\int{\frac{1}{e^{u} + e^{- u}} d u}}} = \frac{\tanh{\left(u \right)} \operatorname{sech}{\left(u \right)}}{2} + {\color{red}{\int{\frac{e^{u}}{e^{2 u} + 1} d u}}}$$

$$$v=e^{u}$$$ olsun.

Böylece $$$dv=\left(e^{u}\right)^{\prime }du = e^{u} du$$$ (adımlar » görülebilir) ve $$$e^{u} du = dv$$$ elde ederiz.

O halde,

$$\frac{\tanh{\left(u \right)} \operatorname{sech}{\left(u \right)}}{2} + {\color{red}{\int{\frac{e^{u}}{e^{2 u} + 1} d u}}} = \frac{\tanh{\left(u \right)} \operatorname{sech}{\left(u \right)}}{2} + {\color{red}{\int{\frac{1}{v^{2} + 1} d v}}}$$

$$$\frac{1}{v^{2} + 1}$$$'nin integrali $$$\int{\frac{1}{v^{2} + 1} d v} = \operatorname{atan}{\left(v \right)}$$$:

$$\frac{\tanh{\left(u \right)} \operatorname{sech}{\left(u \right)}}{2} + {\color{red}{\int{\frac{1}{v^{2} + 1} d v}}} = \frac{\tanh{\left(u \right)} \operatorname{sech}{\left(u \right)}}{2} + {\color{red}{\operatorname{atan}{\left(v \right)}}}$$

Hatırlayın ki $$$v=e^{u}$$$:

$$\frac{\tanh{\left(u \right)} \operatorname{sech}{\left(u \right)}}{2} + \operatorname{atan}{\left({\color{red}{v}} \right)} = \frac{\tanh{\left(u \right)} \operatorname{sech}{\left(u \right)}}{2} + \operatorname{atan}{\left({\color{red}{e^{u}}} \right)}$$

Hatırlayın ki $$$u=\operatorname{acosh}{\left(x \right)}$$$:

$$\operatorname{atan}{\left(e^{{\color{red}{u}}} \right)} + \frac{\operatorname{sech}{\left({\color{red}{u}} \right)} \tanh{\left({\color{red}{u}} \right)}}{2} = \operatorname{atan}{\left(e^{{\color{red}{\operatorname{acosh}{\left(x \right)}}}} \right)} + \frac{\operatorname{sech}{\left({\color{red}{\operatorname{acosh}{\left(x \right)}}} \right)} \tanh{\left({\color{red}{\operatorname{acosh}{\left(x \right)}}} \right)}}{2}$$

Dolayısıyla,

$$\int{\frac{1}{x^{3} \sqrt{x^{2} - 1}} d x} = \operatorname{atan}{\left(e^{\operatorname{acosh}{\left(x \right)}} \right)} + \frac{\sqrt{x - 1} \sqrt{x + 1}}{2 x^{2}}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{1}{x^{3} \sqrt{x^{2} - 1}} d x} = \operatorname{atan}{\left(e^{\operatorname{acosh}{\left(x \right)}} \right)} + \frac{\sqrt{x - 1} \sqrt{x + 1}}{2 x^{2}}+C$$

Cevap

$$$\int \frac{1}{x^{3} \sqrt{x^{2} - 1}}\, dx = \left(\operatorname{atan}{\left(e^{\operatorname{acosh}{\left(x \right)}} \right)} + \frac{\sqrt{x - 1} \sqrt{x + 1}}{2 x^{2}}\right) + C$$$A


Please try a new game Rotatly