$$$x$$$ değişkenine göre $$$\frac{1}{x \ln\left(\frac{c}{x}\right)}$$$ fonksiyonunun integrali

Hesaplayıcı, $$$x$$$ değişkenine göre $$$\frac{1}{x \ln\left(\frac{c}{x}\right)}$$$ fonksiyonunun integralini/antitürevini bulur ve adım adım gösterir.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{1}{x \ln\left(\frac{c}{x}\right)}\, dx$$$.

Çözüm

$$$u=\frac{c}{x}$$$ olsun.

Böylece $$$du=\left(\frac{c}{x}\right)^{\prime }dx = - \frac{c}{x^{2}} dx$$$ (adımlar » görülebilir) ve $$$\frac{dx}{x^{2}} = - \frac{du}{c}$$$ elde ederiz.

İntegral şu hale gelir

$${\color{red}{\int{\frac{1}{x \ln{\left(\frac{c}{x} \right)}} d x}}} = {\color{red}{\int{\left(- \frac{1}{u \ln{\left(u \right)}}\right)d u}}}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=-1$$$ ve $$$f{\left(u \right)} = \frac{1}{u \ln{\left(u \right)}}$$$ ile uygula:

$${\color{red}{\int{\left(- \frac{1}{u \ln{\left(u \right)}}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{u \ln{\left(u \right)}} d u}\right)}}$$

$$$v=\ln{\left(u \right)}$$$ olsun.

Böylece $$$dv=\left(\ln{\left(u \right)}\right)^{\prime }du = \frac{du}{u}$$$ (adımlar » görülebilir) ve $$$\frac{du}{u} = dv$$$ elde ederiz.

İntegral şu hale gelir

$$- {\color{red}{\int{\frac{1}{u \ln{\left(u \right)}} d u}}} = - {\color{red}{\int{\frac{1}{v} d v}}}$$

$$$\frac{1}{v}$$$'nin integrali $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$- {\color{red}{\int{\frac{1}{v} d v}}} = - {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$

Hatırlayın ki $$$v=\ln{\left(u \right)}$$$:

$$- \ln{\left(\left|{{\color{red}{v}}}\right| \right)} = - \ln{\left(\left|{{\color{red}{\ln{\left(u \right)}}}}\right| \right)}$$

Hatırlayın ki $$$u=\frac{c}{x}$$$:

$$- \ln{\left(\left|{\ln{\left({\color{red}{u}} \right)}}\right| \right)} = - \ln{\left(\left|{\ln{\left({\color{red}{\frac{c}{x}}} \right)}}\right| \right)}$$

Dolayısıyla,

$$\int{\frac{1}{x \ln{\left(\frac{c}{x} \right)}} d x} = - \ln{\left(\left|{\ln{\left(\frac{c}{x} \right)}}\right| \right)}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{1}{x \ln{\left(\frac{c}{x} \right)}} d x} = - \ln{\left(\left|{\ln{\left(\frac{c}{x} \right)}}\right| \right)}+C$$

Cevap

$$$\int \frac{1}{x \ln\left(\frac{c}{x}\right)}\, dx = - \ln\left(\left|{\ln\left(\frac{c}{x}\right)}\right|\right) + C$$$A


Please try a new game Rotatly