$$$\frac{1}{\sin^{2}{\left(\frac{x}{3} \right)}}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \frac{1}{\sin^{2}{\left(\frac{x}{3} \right)}}\, dx$$$.
Çözüm
$$$u=\frac{x}{3}$$$ olsun.
Böylece $$$du=\left(\frac{x}{3}\right)^{\prime }dx = \frac{dx}{3}$$$ (adımlar » görülebilir) ve $$$dx = 3 du$$$ elde ederiz.
İntegral şu şekilde yeniden yazılabilir:
$${\color{red}{\int{\frac{1}{\sin^{2}{\left(\frac{x}{3} \right)}} d x}}} = {\color{red}{\int{\frac{3}{\sin^{2}{\left(u \right)}} d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=3$$$ ve $$$f{\left(u \right)} = \frac{1}{\sin^{2}{\left(u \right)}}$$$ ile uygula:
$${\color{red}{\int{\frac{3}{\sin^{2}{\left(u \right)}} d u}}} = {\color{red}{\left(3 \int{\frac{1}{\sin^{2}{\left(u \right)}} d u}\right)}}$$
İntegrali alınan ifadeyi kosekant cinsinden yeniden yazın:
$$3 {\color{red}{\int{\frac{1}{\sin^{2}{\left(u \right)}} d u}}} = 3 {\color{red}{\int{\csc^{2}{\left(u \right)} d u}}}$$
$$$\csc^{2}{\left(u \right)}$$$'nin integrali $$$\int{\csc^{2}{\left(u \right)} d u} = - \cot{\left(u \right)}$$$:
$$3 {\color{red}{\int{\csc^{2}{\left(u \right)} d u}}} = 3 {\color{red}{\left(- \cot{\left(u \right)}\right)}}$$
Hatırlayın ki $$$u=\frac{x}{3}$$$:
$$- 3 \cot{\left({\color{red}{u}} \right)} = - 3 \cot{\left({\color{red}{\left(\frac{x}{3}\right)}} \right)}$$
Dolayısıyla,
$$\int{\frac{1}{\sin^{2}{\left(\frac{x}{3} \right)}} d x} = - 3 \cot{\left(\frac{x}{3} \right)}$$
İntegrasyon sabitini ekleyin:
$$\int{\frac{1}{\sin^{2}{\left(\frac{x}{3} \right)}} d x} = - 3 \cot{\left(\frac{x}{3} \right)}+C$$
Cevap
$$$\int \frac{1}{\sin^{2}{\left(\frac{x}{3} \right)}}\, dx = - 3 \cot{\left(\frac{x}{3} \right)} + C$$$A